English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Periods of modular forms and Jacobi theta functions

Zagier, D. (1991). Periods of modular forms and Jacobi theta functions. Inventiones Mathematicae, 104(3), 449-465. doi:10.1007/BF01245085.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Zagier, Don1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: -
 Abstract: In an earlier paper \\it W. Kohnen and \\it D. Zagier [Modular forms, Symp. Durham 1983, 197-249 (1983; Zbl 0618.10019)] introduced the period polynomial r\\sb f(X)=\\int\\sb 0\\spi∞f(τ)(τ-X)\\spk-2dτ for a cusp form f of weight k in the context of the Eichler-Shimura isomorphism. There they also derived a formula for the (rational) coefficients of a related polynomial in two variables.\\par In the paper under review the author gives a more attractive formula by introducing a generating function. First of all the definition of r\\sb f(X) is extended to f\\in M\\sb k, the space of elliptic modular forms of weight k. Then the generating function is \\align C(X,Y;τ,T) amp; = (XY-1)(X+Y)\\over X\\sp 2Y\\sp 2T\\sp-2 \\\\ amp; +\\sum\\sp ∞\\sbk=2\\sum\\sbf\\in M\\sb k\\atop\\texteigenformr\\sb f(X)r\\sb f(Y)-r\\sb f(-X)r\\sb f(-Y)\\over 2(2i)\\spk-3(f,f)(k-2)! f(τ)T\\spk- 2,\\endalign where (f,f) is the Petersson scalar product. If \\Theta(u)=\\Theta\\sb τ(u) denotes the Jacobi theta function, one obtains the surprising identity C(X,Y;τ,T)=\\Theta'(0)\\sp 2\\Theta((XY-1)T) \\Theta((X+Y)T)\\over \\Theta(XYT) \\Theta(XT) \\Theta(YT) \\Theta(T). The right hand side can also be rewritten, where the Eisenstein series G\\sb k, k≥ 2, are involved in place of the theta function.

Details

show
hide
Language(s):
 Dates: 1991
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: eDoc: 744933
Other: 111
DOI: 10.1007/BF01245085
URI: https://doi.org/10.1007/BF01245085
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Inventiones Mathematicae
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Springer-Verlag, Berlin
Pages: - Volume / Issue: 104 (3) Sequence Number: - Start / End Page: 449 - 465 Identifier: ISSN: 0020-9910