Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Microsolvation of the Redox-Active Tyrosine-D in Photosystem II: Correlation of Energetics with EPR Spectroscopy and Oxidation-Induced Proton Transfer

Sirohiwal, A., Neese, F., & Pantazis, D. A. (2019). Microsolvation of the Redox-Active Tyrosine-D in Photosystem II: Correlation of Energetics with EPR Spectroscopy and Oxidation-Induced Proton Transfer. Journal of the American Chemical Society, 141(7), 3217-3231. doi:10.1021/jacs.8b13123.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Sirohiwal, Abhishek1, 2, Autor           
Neese, Frank3, Autor           
Pantazis, Dimitrios A.1, Autor           
Affiliations:
1Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              
2Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany, ou_persistent22              
3Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Photosystem II (PSII) of oxygenic photosynthesis captures sunlight to drive the catalytic oxidation of water and the reduction of plastoquinone. Among the several redoxactive cofactors that participate in intricate electron transfer pathways there are two tyrosine residues, YZ and YD. They are situated in symmetry-related electron transfer branches but have different environments and play distinct roles. YZ is the immediate oxidant of the oxygen-evolving Mn4CaO5 cluster, whereas YD serves regulatory and protective functions. The protonation states and hydrogen-bond network in the environment of YD remain debated, while the role of microsolvation in stabilizing different redox states of YD and facilitating oxidation or mediating deprotonation, as well the fate of the phenolic proton, is unclear. Here we present detailed structural models of YD and its environment using large-scale quantum mechanical models and all-atom molecular dynamics of a complete PSII monomer. The energetics of water distribution within a hydrophobic cavity adjacent to YD are shown to correlate directly with electron paramagnetic resonance (EPR) parameters such as the tyrosyl g-tensor, allowing us to map the correspondence between specific structural models and available experimental observations. EPR spectra obtained under different conditions are explained with respect to the mode of interaction of the proximal water with the tyrosyl radical and the position of the phenolic proton within the cavity. Our results revise previous models of the energetics and build a detailed view of the role of confined water in the oxidation and deprotonation of YD. Finally, the model of microsolvation developed in the present work rationalizes in a straightforward way the biphasic oxidation kinetics of YD, offering new structural insights regarding the function of the radical in biological photosynthesis.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2018-12-072019-01-222019-02-20
 Publikationsstatus: Erschienen
 Seiten: 15
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/jacs.8b13123
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Journal of the American Chemical Society
  Andere : J. Am. Chem. Soc.
  Kurztitel : JACS
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 141 (7) Artikelnummer: - Start- / Endseite: 3217 - 3231 Identifikator: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870