Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Topological analysis of LFP data

Fedorov, L., Dijkstra, T., Murayama, Y., Bohle, C., & Logothetis, N. (2019). Topological analysis of LFP data. Poster presented at 28th Annual Computational Neuroscience Meeting (CNS*2019), Barcelona, Spain. doi:10.1186/s12868-019-0538-0.

Item is

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Fedorov, L1, 2, Autor           
Dijkstra, T, Autor
Murayama, Y2, 3, Autor           
Bohle, C, Autor
Logothetis, NK2, 3, Autor           
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
3Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The Local Field Potential (LFP) summarizes synaptic and somatodendritic
currents in a bounded ball around the electrode and is
dependent on the spatial distribution of neurons. Both fine-grained
properties and the temporal distribution of typical waveforms in
spontaneous LFP have been used to identify global brain states (see
e.g. [1] for P-waves in stages of sleep). While some LFP signatures have
been studied in detail (in addition to Pons, see e.g. sleep spindles in
the Thalamus and areas of the cortex [2], sharp-wave-ripples [3] in
the Hippocampus and k-complexes [4]), it stands to understand the
relationship between simultaneous signaling in cortical and subcortical
areas. To characterize the mesoscale spontaneous activity, we
quantify data-driven properties of LFP and use them to describe different
brain states. Inspired by [5], we treat frequency-localized temporary
increases in LFP power simultaneously recorded from Cortex,
Hippocampus, Pons and LGN as Neural Events that carry information
about the brain state. Here, we give a fine-grained characterization
of events in the 0-60Hz frequency range that differentiates the onset
and offset intervals from the ongoing short-term oscillation within the
event’s duration. For example, a fixed-amplitude oscillatory interval
can be conceptually thought of as a temporally resolved sample from
a circle, whereas the onset and offset can be regarded as samples from
spirals. Thus, the change within an event corresponds to a topological
change of the trajectory in phase space. We use topological data analysis
to detect this change in topology. In detail, we look at barcodes
computed using persistence homology [6] of the delay embedding [7,
8] of consecutive windows within a neural event. A persistence barcode
can be seen as a topological signature [9] of the reconstructed
trajectory. We rely on the difference between a circle and a spiral in
homology when this qualitative change is inferred from looking at
consecutive barcodes. This feature (Fig. 1) describes the onset-duration-
offset intervals for each oscillation, yet is agnostic to event type, recording site or brain state.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-072019-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1186/s12868-019-0538-0
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 28th Annual Computational Neuroscience Meeting (CNS*2019)
Veranstaltungsort: Barcelona, Spain
Start-/Enddatum: 2019-07-13 - 2019-07-17

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: BMC Neuroscience
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: BioMed Central
Seiten: - Band / Heft: 20 (Supplement 1) Artikelnummer: P179 Start- / Endseite: 98 Identifikator: ISSN: 1471-2202
CoNE: https://pure.mpg.de/cone/journals/resource/111000136905018