English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Single-molecule tracking in live Yersinia enterocolitica reveals distinct cytosolic complexes of injectisome subunits

Rocha, J., Richardson, C., Zhang, M., Darch, C., Cai, E., Diepold, A., et al. (2018). Single-molecule tracking in live Yersinia enterocolitica reveals distinct cytosolic complexes of injectisome subunits. INTEGRATIVE BIOLOGY, 10(9). doi:10.1039/c8ib00075a.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Rocha, J., Author
Richardson, C., Author
Zhang, M., Author
Darch, C., Author
Cai, E., Author
Diepold, A.1, Author           
Gahlmann, A., Author
Affiliations:
1Research Group Bacterial Secretion Systems, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, Karl-von-Frisch-Strasse 10, D-35043 Marburg, DE, ou_3266306              

Content

show
hide
Free keywords: -
 Abstract: In bacterial type 3 secretion, substrate proteins are actively transported from the bacterial cytoplasm into the host cell cytoplasm by a large membrane-embedded machinery called the injectisome. Injectisomes transport secretion substrates in response to specific environmental signals, but the molecular details by which the cytosolic secretion substrates are selected and transported through the type 3 secretion pathway remain unclear. Secretion activity and substrate selectivity are thought to be controlled by a sorting platform consisting of the proteins SctK, SctQ, SctL, and SctN, which together localize to the cytoplasmic side of membrane-embedded injectisomes. However, recent work revealed that sorting platform proteins additionally exhibit substantial cytosolic populations and that SctQ reversibly binds to and dissociates from the cytoplasmic side of membrane-embedded injectisomes. Based on these observations, we hypothesized that dynamic molecular turnover at the injectisome and cytosolic assembly among sorting platform proteins is a critical regulatory component of type 3 secretion. To determine whether sorting platform complexes exist in the cytosol, we measured the diffusive properties of the two central sorting platform proteins, SctQ and SctL, using live cell high-throughput 3D single-molecule tracking microscopy. Single-molecule trajectories, measured in wild-type and mutant Yersinia enterocolitica cells, reveal that both SctQ and SctL exist in several distinct diffusive states in the cytosol, indicating that these proteins form stable homo- and hetero-oligomeric complexes in their native environment. Our findings provide the first diffusive state-resolved insights into the dynamic regulatory network that interfaces stationary membrane-embedded injectisomes with the soluble cytosolic components of the type 3 secretion system.

Details

show
hide
Language(s):
 Dates: 2018-09-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 747932
ISI: 000444812300002
DOI: 10.1039/c8ib00075a
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: INTEGRATIVE BIOLOGY
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 10 (9) Sequence Number: - Start / End Page: - Identifier: ISSN: 1757-9694