English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Flexible Shaping

Krueger, K., & Dayan, P. (2007). Flexible Shaping. Poster presented at Computational and Systems Neuroscience Meeting (COSYNE 2007), Salt Lake City, UT, USA.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0004-42ED-7 Version Permalink: http://hdl.handle.net/21.11116/0000-0004-42EE-6
Genre: Poster

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Krueger, KA, Author
Dayan, P1, Author              
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Cognitive flexibility, the ability to acquire, adapt, combine and recombine behaviors appropriate to everchanging tasks, is a hallmark of intelligent behavior. In mammals, flexibility is likely to depend crucially on mechanisms and representations within the prefrontal cortex (PFC), and on the PFC’s extensive connections with structures such as the basal ganglia (BG) and hippocampus. To study flexibility, it is necessary at the very least to present collections of related tasks; unfortunately, most experimental, and almost all computational, approaches have hitherto focused on learning single underlying tasks, albeit with subtly changing contingencies. In this work, we consider a foundational form of flexibility – the way that separate behavioral components can be acquired through shaping and then combined to solve an overall task. We study the 12-AX task, which was proposed and then modelled by O’Reilly et al[2] as a rich test bed for analysing PFC-PFC and PFC-BG interactions. Subjects are presented sequentially with letters or the digits ’1’ or ’2’. If the most recent digit they have seen was a ’1’, they have to provide a non-default response only to the sequence segment ‘AX’; if it was a ’2’, then they must react only to ‘BY’. Storing ’1’ or ’2’ is an outer working memory loop defining a cognitive context; storing either ‘A’ or ‘B’ is an inner loop. O’Reilly et al modeled a complex reinforcement-based learning process for this task, and showed that it out-performed a standard architecture for learning to use working memory in tasks. However, in both cases, the networks had to learn the full task monolithically, in one fell swoop. Instead, we considered the consequences of shaping, by training individual subcomponents separately, and learning their combination. We performed our shaping in an LSTM[1] network.

Details

show
hide
Language(s):
 Dates: 2007-02
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: Computational and Systems Neuroscience Meeting (COSYNE 2007)
Place of Event: Salt Lake City, UT, USA
Start-/End Date: 2007-02-22 - 2007-02-25

Legal Case

show

Project information

show

Source 1

show
hide
Title: Cosyne, 2007: Computational and Systems Neuroscience
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: II-41 Start / End Page: 114 Identifier: -