Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Sound representation methods for spectro-temporal receptive field estimation

Gill, P., Zhang, J., Woolley, S. M., Fremouw, T., & Theunissen, F. E. (2006). Sound representation methods for spectro-temporal receptive field estimation. Journal of Computational Neuroscience, 21(1), 5-20. doi:10.1007/s10827-006-7059-4.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Gill, P., Autor
Zhang, Junli, Autor
Woolley, S. M., Autor
Fremouw, T., Autor
Theunissen, Frederic E.1, Autor           
Affiliations:
1University Berkeley, USA, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Acoustic Stimulation/methods Animals Auditory Perception/*physiology Brain/cytology Finches Male *Models, Neurological Neurons/*physiology Nonlinear Dynamics Predictive Value of Tests Reaction Time/physiology *Sound Sound Spectrography/methods Time Factors Time Perception/*physiology
 Zusammenfassung: The spectro-temporal receptive field (STRF) of an auditory neuron describes the linear relationship between the sound stimulus in a time-frequency representation and the neural response. Time-frequency representations of a sound in turn require a nonlinear operation on the sound pressure waveform and many different forms for this non-linear transformation are possible. Here, we systematically investigated the effects of four factors in the non-linear step in the STRF model: the choice of logarithmic or linear filter frequency spacing, the time-frequency scale, stimulus amplitude compression and adaptive gain control. We quantified the goodness of fit of these different STRF models on data obtained from auditory neurons in the songbird midbrain and forebrain. We found that adaptive gain control and the correct stimulus amplitude compression scheme are paramount to correctly modelling neurons. The time-frequency scale and frequency spacing also affected the goodness of fit of the model but to a lesser extent and the optimal values were stimulus dependent.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2006
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: 16633939
DOI: 10.1007/s10827-006-7059-4
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Journal of Computational Neuroscience
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Boston : Kluwer Academic Publishers
Seiten: - Band / Heft: 21 (1) Artikelnummer: - Start- / Endseite: 5 - 20 Identifikator: ISSN: 0929-5313
CoNE: https://pure.mpg.de/cone/journals/resource/954925568787