English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Physical Nature of Differential Spin-State Stabilization of Carbenes by Hydrogen and Halogen Bonding: A Domain-Based Pair Natural Orbital Coupled Cluster Study

Ghafarian Shirazi, R., Neese, F., Pantazis, D. A., & Bistoni, G. (2019). Physical Nature of Differential Spin-State Stabilization of Carbenes by Hydrogen and Halogen Bonding: A Domain-Based Pair Natural Orbital Coupled Cluster Study. The Journal of Physical Chemistry A, 123(24), 5081-5090. doi:10.1021/acs.jpca.9b01051.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0004-4E5B-0 Version Permalink: http://hdl.handle.net/21.11116/0000-0004-4E5C-F
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ghafarian Shirazi, Reza1, 2, Author              
Neese, Frank3, Author              
Pantazis, Dimitrios A.1, Author              
Bistoni, Giovanni4, Author              
Affiliations:
1Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              
2Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany, ou_persistent22              
3Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              
4Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541703              

Content

show
hide
Free keywords: -
 Abstract: The variation in the singlet–triplet energy gap of diphenylcarbene (DPC) upon interaction with hydrogen (water and methanol) or halogen bond (XCF3, X = Cl, Br, I) donors to form van der Waals (vdW) complexes is investigated in relation to the electrostatic and dispersion components of such intermolecular interactions. The domain-based local pair natural orbital coupled cluster method, DLPNO–CCSD(T), is used for calculating accurate single–triplet energy gaps and interaction energies for both spin states. The local energy decomposition scheme is used to provide an accurate quantification to the various interaction energy components at the DLPNO–CCSD(T) level. It is shown that the formation of vdW adducts stabilizes the singlet state of DPC, and in the case of water, methanol, and ICF3, it reverses the ground state from triplet to singlet. Electrostatic interactions are significant in both spin states, but preferentially stabilize the singlet state. For methanol and ClCF3, London dispersion forces have the opposite effect, stabilizing preferentially the triplet state. The quantification of the energetic components of the interactions through the local energy decomposition analysis correlates well with experimental findings and provides the basis for more elaborate treatments of microsolvation in carbenes.

Details

show
hide
Language(s): eng - English
 Dates: 2019-02-012019-04-022019-06-20
 Publication Status: Published in print
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1021/acs.jpca.9b01051
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physical Chemistry A
  Other : J. Phys. Chem. A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Columbus, OH : American Chemical Society
Pages: - Volume / Issue: 123 (24) Sequence Number: - Start / End Page: 5081 - 5090 Identifier: ISSN: 1089-5639
CoNE: https://pure.mpg.de/cone/journals/resource/954926947766_4