Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Efficient implementation of the analytical second derivatives of hartree–fock and hybrid DFT energies within the framework of the conductor‐like polarizable continuum model

Garcia-Ratés, M., & Neese, F. (2019). Efficient implementation of the analytical second derivatives of hartree–fock and hybrid DFT energies within the framework of the conductor‐like polarizable continuum model. Journal of Computational Chemistry, 40(20), 1816-1828. doi:10.1002/jcc.25833.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Garcia-Ratés, Miquel1, Autor           
Neese, Frank1, Autor           
Affiliations:
1Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Inhalt

einblenden:
ausblenden:
Schlagwörter: analytical Hessian; C-PCM; density functional theory; Harttree-Fock; implicit solvation
 Zusammenfassung: Calculation of vibrational frequencies for solvated systems is essential to study reactions in complex environments. In this paper, we report the implementation of the analytical self‐consistent field Hessian at the Hartree–Fock and density functional theory levels in the framework of the conductor‐like polarizable continuum model (C‐PCM) into the ORCA quantum chemistry suite. The calculated vibrational frequencies agree very well with those computed through numerical differentiation of the analytical gradients. The deviation between both sets of data is smaller than 3 cm−1 for frequencies larger than 200 cm−1 and smaller than 5 cm−1 for the low‐frequency regime (100 cm−1  <  ω  <  200 cm−1). The accuracy of the frequencies is not significantly affected by the size of the density functional theory (DFT) integration grid, with a deviation lower than 0.5 cm−1 between data computed with the smallest and that with the largest DFT grid size. The calculation of the analytical Hessian is between 3 and 12 times faster than its numerical counterpart. The C‐PCM terms only add an overhead of 10–30% relative to the gas phase calculations. Finally, for acetone, the (B3LYP) values for the frequency shifts obtained in going from the gas phase to liquid acetone are in agreement with experiment.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-01-072019-03-172019-04-022019-07-30
 Publikationsstatus: Erschienen
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/jcc.25833
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Computational Chemistry
  Kurztitel : J. Comput. Chem.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Wiley
Seiten: - Band / Heft: 40 (20) Artikelnummer: - Start- / Endseite: 1816 - 1828 Identifikator: ISSN: 0192-8651
CoNE: https://pure.mpg.de/cone/journals/resource/954925489848