English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Drops walking on a vibrating bath: Towards a hydrodynamic pilot-wave theory

Molacek, J., & Bush, J. W. M. (2013). Drops walking on a vibrating bath: Towards a hydrodynamic pilot-wave theory. Journal of Fluid Mechanics, 727, 612-647. doi:10.1017/jfm.2013.280.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Molacek, J.1, Author           
Bush, John W. M., Author
Affiliations:
1Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063287              

Content

show
hide
Free keywords: -
 Abstract: We present the results of a combined experimental and theoretical investigation of droplets walking on a vertically vibrating fluid bath. Several walking states are reported, including pure resonant walkers that bounce with precisely half the driving frequency, limping states, wherein a short contact occurs between two longer ones, and irregular chaotic walking. It is possible for several states to arise for the same parameter combination, including high- and low-energy resonant walking states. The extent of the walking regime is shown to be crucially dependent on the stability of the bouncing states. In order to estimate the resistive forces acting on the drop during impact, we measure the tangential coefficient of restitution of drops impacting a quiescent bath. We then analyse the spatio-temporal evolution of the standing waves created by the drop impact and obtain approximations to their form in the small-drop and long-time limits. By combining theoretical descriptions of the horizontal and vertical drop dynamics and the associated wave field, we develop a theoretical model for the walking drops that allows us to rationalize the limited extent of the walking regimes. The critical requirement for walking is that the drop achieves resonance with its guiding wave field. We also rationalize the observed dependence of the walking speed on system parameters: while the walking speed is generally an increasing function of the driving acceleration, exceptions arise due to possible switching between different vertical bouncing modes. Special focus is given to elucidating the critical role of impact phase on the walking dynamics. The model predictions are shown to compare favourably with previous and new experimental data. Our results form the basis of the first rational hydrodynamic pilot-wave theory.

Details

show
hide
Language(s): eng - English
 Dates: 2013-06-282013-07-25
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1017/jfm.2013.280
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Fluid Mechanics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 727 Sequence Number: - Start / End Page: 612 - 647 Identifier: -