English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Construction of stable rank 2 vector bundles on P3 via symplectic bundles

Tikhomirov, A. S., Tikhomirov, S. A., & Vasiliev, D. A. (2019). Construction of stable rank 2 vector bundles on P3 via symplectic bundles. Siberian Mathematical Journal, 60(2), 343-358. doi:10.1134/S0037446619020150.

Item is

Basic

show hide
Genre: Journal Article
Latex : Construction of stable rank 2 vector bundles on $\mathbb{P}^3$ via symplectic bundles

Files

show Files
hide Files
:
arXiv:1804.07984.pdf (Preprint), 263KB
Name:
arXiv:1804.07984.pdf
Description:
File downloaded from arXiv at 2019-08-14 13:55
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Tikhomirov-Tikhomirov-Vassiliev_Construction of stable rank 2 vector bundles on P3 via symplectic bundles_2019.pdf (Publisher version), 256KB
 
File Permalink:
-
Name:
Tikhomirov-Tikhomirov-Vassiliev_Construction of stable rank 2 vector bundles on P3 via symplectic bundles_2019.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1134/S0037446619020150 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Tikhomirov, A. S.1, Author           
Tikhomirov, S. A., Author
Vasiliev, D. A., Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry
 Abstract: In this article we study the Gieseker-Maruyama moduli spaces $\mathcal{B}(e,n)$ of stable rank 2 algebraic vector bundles with Chern classes $c_1=e\in\{-1,0\},\ c_2=n\ge1$ on the projective space $\mathbb{P}^3$.
We construct two new infinite series $\Sigma_0$ and $\Sigma_1$ of irreducible
components of the spaces $\mathcal{B}(e,n)$, for $e=0$ and $e=-1$, respectively. General bundles of these components are obtained as cohomology sheaves of monads, the middle term of which is a rank 4 symplectic instanton
bundle in case $e=0$, respectively, twisted symplectic bundle in case $e=-1$.
We show that the series $\Sigma_0$ contains components for all big enough values of $n$ (more precisely, at least for $n\ge146$). $\Sigma_0$ yields the next example, after the series of instanton components, of an infinite series of components of $\mathcal{B}(0,n)$ satisfying this property.

Details

show
hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Issued
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Siberian Mathematical Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Pleiades Publishing ; Springer
Pages: - Volume / Issue: 60 (2) Sequence Number: - Start / End Page: 343 - 358 Identifier: -

Source 2

show
hide
Title: Sibirskiĭ Matematicheskiĭ Zhurnal
  Abbreviation : Sibirsk. Mat. Zh.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Rossiĭskaya Akademiya Nauk
Pages: - Volume / Issue: 60 (2) Sequence Number: - Start / End Page: 441 - 460 Identifier: -