日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Refined parcellation of the nervous system by algorithmic detection of hidden features within communities

Shi, D., Levina, A., & Noori, H. (2019). Refined parcellation of the nervous system by algorithmic detection of hidden features within communities. Physical Review E, 100(1):, pp. 1-14. doi:10.1103/PhysRevE.100.012301.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0004-7948-4 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0004-7949-3
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Shi, D1, 2, 著者           
Levina, A2, 3, 著者           
Noori, HR1, 2, 著者           
所属:
1Research Group Neuronal Convergence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528694              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
3Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

内容説明

表示:
非表示:
キーワード: -
 要旨: The nervous system can be represented as a multiscale network comprised by single cells or ensembles that are linked by physical or functional connections. Groups of morphologically and physiologically diverse neurons are wired as connectivity patterns with a certain degree of universality across species and individual variability. Thereby, community detection approaches are often used to characterize how neural units cluster into such densely interconnected groups. However, the communities may possess deeper structural features that remain undetected by current algorithms. We present a scheme for refined parcellation of neuronal networks, by identifying local integrator units (LU) that are contained in network communities. An LU is defined as a connected subnetwork in which all neuronal connections are constrained within this unit, and can be formed for instance by a set of interneurons. Our method uses the Louvain algorithm to detect communities and participation coefficients to discriminate local neurons from global hubs. The sensitivity of the algorithm for discovering LUs with respect to the choice of community detection algorithm and network parameters was tested by simulations of different synthetic networks. The appropriateness of the algorithm for real-world scenarios was demonstrated on weighted and binary Caenorhabditis elegans connectomes. The detected LUs are distinctly localized within the worm body and clearly define functional groups. This approach provides a robust, observer-independent parcellation strategy that is useful for functional structure confirmation and potentially contributes to the current efforts in quantitative whole-brain architectonics of different species as well as the analysis of functional connectivity networks.

資料詳細

表示:
非表示:
言語:
 日付: 2019-07
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1103/PhysRevE.100.012301
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Physical Review E
  その他 : Phys. Rev. E
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Melville, NY : American Physical Society
ページ: - 巻号: 100 (1) 通巻号: 012301 開始・終了ページ: 1 - 14 識別子(ISBN, ISSN, DOIなど): ISSN: 1539-3755
CoNE: https://pure.mpg.de/cone/journals/resource/954925225012