English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Divisibility questions in commutative algebraic groups

Paladino, L. (2019). Divisibility questions in commutative algebraic groups. Journal of Number Theory, 205, 210-245. doi:10.1016/j.jnt.2019.05.007.

Item is

Files

show Files
hide Files
:
arXiv:1603.05857.pdf (Preprint), 474KB
Name:
arXiv:1603.05857.pdf
Description:
File downloaded from arXiv at 2019-08-23 15:21
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
https://doi.org/10.1016/j.jnt.2019.05.007 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Paladino, Laura1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Number Theory
 Abstract: Let $k$ be a number field, let ${\mathcal{A}}$ be a commutative algebraic group defined over $k$ and let $p$ be a prime number. Let ${\mathcal{A}}[p]$ denote the $p$-torsion subgroup of ${\mathcal{A}}$. We give some sufficient conditions for the local-global divisibility by $p$ in ${\mathcal{A}}$ and the
triviality of $Sha (k,{\mathcal{A}}[p])$. When ${\mathcal{A}}$ is an abelian variety principally polarized, those conditions imply that the elements of the Tate-Shafarevich group $Sha(k,{\mathcal{A}})$ are divisible by $p$ in the Weil-Ch\^atelet group $H^1(k,{\mathcal{A}})$ and the local-global principle for divisibility by $p$ holds in $H^r(k,{\mathcal{A}})$, for all $r\geq 0$.

Details

show
hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Issued
 Pages: 36
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Number Theory
  Abbreviation : J. Number Theory
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Elsevier
Pages: - Volume / Issue: 205 Sequence Number: - Start / End Page: 210 - 245 Identifier: -