English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Divisibility questions in commutative algebraic groups

Paladino, L. (2019). Divisibility questions in commutative algebraic groups. Journal of Number Theory, 205, 210-245. doi:10.1016/j.jnt.2019.05.007.

Item is

Files

show Files
hide Files
:
arXiv:1603.05857.pdf (Preprint), 474KB
Name:
arXiv:1603.05857.pdf
Description:
File downloaded from arXiv at 2019-08-23 15:21
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
https://doi.org/10.1016/j.jnt.2019.05.007 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Paladino, Laura1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Number Theory
 Abstract: Let $k$ be a number field, let ${\mathcal{A}}$ be a commutative algebraic group defined over $k$ and let $p$ be a prime number. Let ${\mathcal{A}}[p]$ denote the $p$-torsion subgroup of ${\mathcal{A}}$. We give some sufficient conditions for the local-global divisibility by $p$ in ${\mathcal{A}}$ and the
triviality of $Sha (k,{\mathcal{A}}[p])$. When ${\mathcal{A}}$ is an abelian variety principally polarized, those conditions imply that the elements of the Tate-Shafarevich group $Sha(k,{\mathcal{A}})$ are divisible by $p$ in the Weil-Ch\^atelet group $H^1(k,{\mathcal{A}})$ and the local-global principle for divisibility by $p$ holds in $H^r(k,{\mathcal{A}})$, for all $r\geq 0$.

Details

show
hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Issued
 Pages: 36
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Number Theory
  Abbreviation : J. Number Theory
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Elsevier
Pages: - Volume / Issue: 205 Sequence Number: - Start / End Page: 210 - 245 Identifier: -