English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Dimensional interpolation and the Selberg integral

Golyshev, V., van Straten, D., & Zagier, D. (2019). Dimensional interpolation and the Selberg integral. Journal of Geometry and Physics, 145: 103455. doi:10.1016/j.geomphys.2019.06.006.

Item is

Files

show Files
hide Files
:
arXiv:1906.00071.pdf (Preprint), 148KB
Name:
arXiv:1906.00071.pdf
Description:
File downloaded from arXiv at 2019-09-05 14:50
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
https://doi.org/10.1016/j.geomphys.2019.06.006 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Golyshev, V., Author
van Straten, D., Author
Zagier, D.1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry, High Energy Physics - Theory
 Abstract: We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a Grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non-integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.

Details

show
hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geometry and Physics
  Abbreviation : J. Geom. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Elsevier
Pages: - Volume / Issue: 145 Sequence Number: 103455 Start / End Page: - Identifier: -