English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Towards fully integrated photonic displacement sensors

Bag, A., Neugebauer, M., Mick, U., Christiansen, S., Schulz, S. A., & Banzer, P. (2020). Towards fully integrated photonic displacement sensors. Nature Communications, 11: 2915. doi:10.1038/s41467-020-16739-y.

Item is

Files

show Files
hide Files
:
Towards fully integrated photonic displacement sensors.pdf (Preprint), 10MB
Name:
Arxiv: Towards fully integrated photonic displacement sensors.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Bag, Ankan1, 2, 3, Author           
Neugebauer, Martin2, 3, Author           
Mick, Uwe2, 3, Author           
Christiansen, Sillke4, 5, Author
Schulz, Sebastian A 6, Author
Banzer, Peter2, 3, Author           
Affiliations:
1International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364697              
2Interference Microscopy and Nanooptics, Leuchs Emeritus Group, Emeritus Groups, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364700              
3Institute of Optics, Information and Photonics, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany, ou_persistent22              
4Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany, ou_persistent22              
5Physics Department, Freie Universitt Berlin, Arnimallee 14, D-14195 Berlin, Germany, ou_persistent22              
6SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Scotland, UK, ou_persistent22              

Content

show
hide
Free keywords: optical metrology, on-chip integration, Huygens dipoles, integrated displacement sensor, photonic crystal waveguide
 Abstract: The field of optical metrology with its high precision position, rotation and wavefront sensors represents the basis for lithography and high resolution microscopy. However, the on-chip integration - a task highly relevant for future nanotechnological devices - necessitates the reduction of the spatial footprint of sensing schemes by the deployment of novel concepts. A promising route towards this goal is predicated on the controllable directional emission of the fundamentally smallest emitters of light, i.e. dipoles, as an indicator. Here we realize an integrated displacement sensor based on the directional emission of Huygens dipoles excited in an individual dipolar antenna. The position of the antenna relative to the excitation field determines its directional coupling into a six-way crossing of photonic crystal waveguides. In our experimental study supported by theoretical calculations, we demonstrate the first prototype of an integrated displacement sensor with a standard deviation of the position accuracy below λ/300 at room temperature and ambient conditions.

Details

show
hide
Language(s): eng - English
 Dates: 2020-06-09
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 1909.04478v1
DOI: 10.1038/s41467-020-16739-y
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 11 Sequence Number: 2915 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723