English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Inducing a human-like shape bias leads to emergent human-level distortion robustness in CNNs

Geirhos, R., Rubisch, P., Rauber, J., Medina Temme, C., Michaelis, C., Brendel, W., et al. (2019). Inducing a human-like shape bias leads to emergent human-level distortion robustness in CNNs. Poster presented at Nineteenth Annual Meeting of the Vision Sciences Society (VSS 2019), St. Pete Beach, FL, USA. doi:10.1167/19.10.209c.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0004-BF4C-1 Version Permalink: http://hdl.handle.net/21.11116/0000-0004-BF4D-0
Genre: Poster

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Geirhos, R, Author
Rubisch, P, Author
Rauber, J, Author
Medina Temme, CR, Author
Michaelis, C, Author
Brendel, W, Author
Bethge, M1, 2, Author              
Wichmann, FA, Author              
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              

Content

show
hide
Free keywords: -
 Abstract: Convolutional neural networks (CNNs) have been proposed as computational models for (rapid) human object recognition and the (feedforward-component) of the primate ventral stream. The usefulness of CNNs as such models obviously depends on the degree of similarity they share with human visual processing. Here we investigate two major differences between human vision and CNNs, first distortion robustness---CNNs fail to cope with novel, previously unseen distortions---and second texture bias---unlike humans, standard CNNs seem to primarily recognise objects by texture rather than shape. During our investigations we discovered an intriguing connection between the two: inducing a human-like shape bias in CNNs makes them inherently robust against many distortions. First we show that CNNs cope with novel distortions worse than humans even if many distortion-types are included in the training data. We hypothesised that the lack of generalisation in CNNs may lie in fundamentally different classification strategies: Humans primarily use object shape, whereas CNNs may rely more on (easily distorted) object texture. Thus in a second set of experiments we investigated the importance of texture vs. shape cues for human and CNN object recognition using a novel method to create texture-shape cue conflict stimuli. Our results, based on 49K human psychophysical trials and eight widely used CNNs, reveal that CNNs trained with typical “natural” images indeed depend much more on texture than on shape, a result in contrast to the recent literature claiming human-like object recognition in CNNs. However, both differences between humans and CNNs can be overcome: training CNNs on a suitable dataset induces a human-like shape bias. This resulted in an emerging human-level distortion robustness in CNNs. Taken together, our experiments highlight how key differences between human and machine vision can be harnessed to improve CNN robustness---and thus make them more similar to the human visual system---by inducing a human-like bias.

Details

show
hide
Language(s):
 Dates: 2019-052019-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/19.10.209c
 Degree: -

Event

show
hide
Title: Nineteenth Annual Meeting of the Vision Sciences Society (VSS 2019)
Place of Event: St. Pete Beach, FL, USA
Start-/End Date: 2019-05-17 - 2019-05-22

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 19 (10) Sequence Number: 51.14 Start / End Page: 209 - 210 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050