English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The formation and evolution of bright spots on Ceres

Stein, N. T., Ehlmann, B., Palomba, E., Sanctis, M. C. D., Nathues, A., Hiesinger, H., et al. (2019). The formation and evolution of bright spots on Ceres. Icarus, 320(SI), 188-201. doi:10.1016/j.icarus.2017.10.014.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-540A-1 Version Permalink: http://hdl.handle.net/21.11116/0000-0006-540B-0
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Stein, N. T., Author
Ehlmann, B.L., Author
Palomba, E., Author
Sanctis, M. C. De, Author
Nathues, Andreas1, Author              
Hiesinger, H., Author
Ammannito, E., Author
Raymond, C. A., Author
Jaumann, R., Author
Longobardo, A., Author
Russell, C. T., Author
Affiliations:
1Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832288              

Content

show
hide
Free keywords: -
 Abstract: The otherwise homogeneous surface of Ceres is dotted with hundreds of anomalously bright, predominantly carbonate-bearing areas, termed “faculae,” with Bond albedos ranging from ∼0.02 to >0.5. Here, we classify and map faculae globally to characterize their geological setting, assess potential mechanisms for their formation and destruction, and gain insight into the processes affecting the Ceres surface and near-surface. Faculae were found to occur in four distinct geological settings, associated predominantly with impact craters: (1) crater pits, peaks, or floor fractures (floor faculae), (2) crater rims or walls (rim/wall faculae), (3) bright ejecta blankets, and (4) the mountain Ahuna Mons. Floor faculae were identified in eight large, deep, and geologically young (asteroid-derived model (ADM) ages of <420 ± 60 Ma) craters: Occator, Haulani, Dantu, Ikapati, Urvara, Gaue, Ernutet, and Azacca. The geometry and geomorphic features of the eight craters with floor faculae are consistent with facula formation via impact-induced heating and upwelling of volatile-rich materials, upwelling/excavation of heterogeneously distributed subsurface brines or their precipitation products, or a combination of both processes. Rim/wall faculae and bright ejecta occur in and around hundreds of relatively young craters of all sizes, and the geometry of exposures is consistent with facula formation via the excavation of subsurface bright material, possibly from floor faculae that were previously emplaced and buried. A negative correlation between rim/wall facula albedo and crater age indicates that faculae darken over time. Models using the Ceres crater production function suggest initial production or exposure of faculae by large impacts, subsequent dissemination of facula materials to form additional small faculae, and then burial by impact-induced lateral mixing, which destroys faculae over timescales of less than 1.25 Gyr. Cumulatively, these models and the observation of faculae limited to geologically young craters indicate relatively modern formation or exposure of faculae, indicating that Ceres’ surface remains active and that the near surface may support brines in the present day.

Details

show
hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1016/j.icarus.2017.10.014
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Icarus
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier B.V.
Pages: - Volume / Issue: 320 (SI) Sequence Number: - Start / End Page: 188 - 201 Identifier: ISSN: 0019-1035
CoNE: https://pure.mpg.de/cone/journals/resource/954922645023