English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Sectoral r modes and periodic radial velocity variations of Sun-like stars

Lanza, A. F., Gizon, L., Zaqarashvili, T. V., Liang, Z.-C., & Rodenbeck, K. (2019). Sectoral r modes and periodic radial velocity variations of Sun-like stars. Astronomy and Astrophysics, 623: A50. doi:10.1051/0004-6361/201834712.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Lanza, A. F., Author
Gizon, Laurent1, Author           
Zaqarashvili, T. V., Author
Liang, Zhi-Chao1, Author           
Rodenbeck, Kai1, Author           
Affiliations:
1Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832287              

Content

show
hide
Free keywords: -
 Abstract: Context. Radial velocity (RV) measurements are used to search for planets orbiting late-type main-sequence stars and to confirm the transiting planets.

Aims. The most advanced spectrometers are now approaching a precision of ~10 cm s−1, which implies the need to identify and correct for all possible sources of RV oscillations intrinsic to the star down to this level and possibly beyond. The recent discovery of global-scale equatorial Rossby waves in the Sun, also called r modes, prompted us to investigate their possible signature in stellar RV measurements. These r modes are toroidal modes of oscillation whose restoring force is the Coriolis force; they propagate in the retrograde direction in a frame that co-rotates with the star. The solar r modes with azimuthal orders 3 ≤ m ≲ 15 were identified unambiguously because of their dispersion relation and their long e-folding lifetimes of hundreds of days.

Methods. In this paper, we simulate the RV oscillations produced by sectoral r modes with 2 ≤ m ≤ 5 by assuming a stellar rotation period of 25.54 days and a maximum amplitude of the surface velocity of each mode of 2 m s−1. This amplitude is representative of the solar measurements except for the m = 2 mode, which has not yet been observed on the Sun.

Results. Sectoral r modes with azimuthal orders m = 2 and 3 would produce RV oscillations with amplitudes of 76.4 and 19.6 cm s−1 and periods of 19.16 and 10.22 days, respectively, for a star with an inclination of the rotation axis to the line of sight i = 60°. Therefore, they may produce rather sharp peaks in the Fourier spectrum of the radial velocity time series that could lead to spurious planetary detections.

Conclusions. Sectoral r modes may represent a source of confusion in the case of slowly rotating inactive stars that are preferential targets for RV planet search. The main limitation of the present investigation is the lack of observational constraints on the amplitude of the m = 2 mode on the Sun.

Details

show
hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/201834712
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: 7 Volume / Issue: 623 Sequence Number: A50 Start / End Page: - Identifier: Other: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1