日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Computational Phenotyping of Two-Person Interactions Reveals Differential Neural Response to Depth-of-Thought

Xiang, T., Ray, D., Lohrenz, T., Dayan, P., & Montague, P. (2012). Computational Phenotyping of Two-Person Interactions Reveals Differential Neural Response to Depth-of-Thought. PLoS Computational Biology, 8(12), 1-9. doi:10.1371/journal.pcbi.1002841.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0004-C2FA-7 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0004-C2FB-6
資料種別: 学術論文

ファイル

表示: ファイル

作成者

表示:
非表示:
 作成者:
Xiang, T, 著者
Ray, D, 著者
Lohrenz, T, 著者
Dayan, P1, 著者           
Montague, PR, 著者
所属:
1External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject's depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans.

資料詳細

表示:
非表示:
言語:
 日付: 2012-12
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1371/journal.pcbi.1002841
eDoc: e1002841
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: PLoS Computational Biology
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: San Francisco, CA : Public Library of Science
ページ: - 巻号: 8 (12) 通巻号: - 開始・終了ページ: 1 - 9 識別子(ISBN, ISSN, DOIなど): ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1