Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Computational Phenotyping of Two-Person Interactions Reveals Differential Neural Response to Depth-of-Thought

Xiang, T., Ray, D., Lohrenz, T., Dayan, P., & Montague, P. (2012). Computational Phenotyping of Two-Person Interactions Reveals Differential Neural Response to Depth-of-Thought. PLoS Computational Biology, 8(12), 1-9. doi:10.1371/journal.pcbi.1002841.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Xiang, T, Autor
Ray, D, Autor
Lohrenz, T, Autor
Dayan, P1, Autor           
Montague, PR, Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject's depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2012-12
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pcbi.1002841
eDoc: e1002841
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 8 (12) Artikelnummer: - Start- / Endseite: 1 - 9 Identifikator: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1