English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Quantitative Characterization of a Desalination Membrane Model System by X‑ray Photoelectron Spectroscopy

Buechner, C., Gericke, S. M., Trotochaud, L., Karslıoǧlu, O., Raso, J., & Bluhm, H. (2019). Quantitative Characterization of a Desalination Membrane Model System by X‑ray Photoelectron Spectroscopy. Langmuir, 35(35), 11315-11321. doi:10.1021/acs.langmuir.9b01838.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Buechner, Christin1, Author
Gericke, Sabrina M.1, Author
Trotochaud, Lena1, Author
Karslıoǧlu, Osman1, Author
Raso, Joseph1, Author
Bluhm, Hendrik1, 2, 3, Author           
Affiliations:
1Chemical Sciences Division, Berkeley, California 94720, United States, ou_persistent22              
2Inorganic Chemistry, Fritz Haber Institute, Max Planck Society, ou_24023              
3Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Aromatic polyamide films form the active layer in reverse osmosis desalination membranes. Despite widespread use of this technology, it suffers from low rejection rates for certain water contaminants and from membrane fouling. Through a better understanding of the fundamental surface chemical processes during reverse osmosis desalination, advances in membrane and material design are expected. The recent invention of a molecular layer-by-layer (mLbL) preparation technique [Johnson, P. M.; Molecular Layer-by-Layer Deposition of Highly Crosslinked Polyamide Films. J. Polym. Sci., Part B: Polym. Phys. 2012, 50 (3), 168−173] yields films that are sufficiently smooth to warrant investigation with high-resolution microscopy and spectroscopy methods. We present high-resolution, quantitative X-ray photoelectron spectroscopy (XPS) data on the surface chemistry of ultrathin polyamide films that can serve as a model system for desalination membranes. We show that a quantitative analysis of the XPS spectra gives information about the functional groups of the film as well as other compounds present due to the synthesis under ambient conditions. Unpolymerized functional groups are identified and aid in understanding the degree of cross-linking. Investigation of polymers with synchrotron-based XPS requires taking beam-induced changes into account. We quantify X-ray beam damage and show that beam damage to the polyamide is limited, allowing long-term investigation of thin polyamide films. Characterizing mLbL-grown films via high-resolution XPS is the basis for a better understanding of the chemical interplay of polyamide surface functional groups with the major components of desalination systems.

Details

show
hide
Language(s): eng - English
 Dates: 2019-08-052019-06-172019-08-092019-09-03
 Publication Status: Issued
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acs.langmuir.9b01838
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Langmuir
  Abbreviation : Langmuir
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Columbus, OH : American Chemical Society
Pages: 7 Volume / Issue: 35 (35) Sequence Number: - Start / End Page: 11315 - 11321 Identifier: ISSN: 0743-7463
CoNE: https://pure.mpg.de/cone/journals/resource/954925541194