English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Active site rearrangement and structural divergence in prokaryotic respiratory oxidases

Safarian, S., Hahn, A., Mills, D., Radloff, M., Eisinger, M. L., Nikolaev, A., et al. (2019). Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science, 366(6461), 100-104. doi:10.1126/science.aay0967.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Safarian, Schara1, Author           
Hahn, Alexander2, Author           
Mills, Deryck2, Author           
Radloff, Melanie1, Author           
Eisinger, Martin Lorenz1, Author           
Nikolaev, A.3, Author
Meier-Credo, Jakob2, Author           
Melin, F.3, Author
Miyoshi, H.4, Author
Gennis, R.B.5, Author
Sakamoto, J.6, Author
Langer, Julian David1, Author           
Hellwig, P.3, 7, Author
Kühlbrandt, Werner2, Author           
Michel, Hartmut1, Author           
Affiliations:
1Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068290              
2Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068291              
3Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France, ou_persistent22              
4Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, ou_persistent22              
5Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA, ou_persistent22              
6Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan, ou_persistent22              
7University of Strasbourg Institute for Advanced Study, Strasbourg, France, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Cytochrome bd–type quinol oxidases catalyze the reduction of molecular oxygen to water in the respiratory chain of many human-pathogenic bacteria. They are structurally unrelated to mitochondrial cytochrome c oxidases and are therefore a prime target for the development of antimicrobial drugs. We determined the structure of the Escherichia coli cytochrome bd-I oxidase by single-particle cryo–electron microscopy to a resolution of 2.7 angstroms. Our structure contains a previously unknown accessory subunit CydH, the L-subfamily–specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase reveals structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site.

Details

show
hide
Language(s): eng - English
 Dates: 2019-05-202019-09-042019-10-042019-10-04
 Publication Status: Issued
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1126/science.aay0967
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science
  Other : Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Association for the Advancement of Science
Pages: - Volume / Issue: 366 (6461) Sequence Number: - Start / End Page: 100 - 104 Identifier: ISSN: 0036-8075
CoNE: https://pure.mpg.de/cone/journals/resource/991042748276600_1