English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Non-Fermi liquid at the FFLO quantum critical point

Pimenov, D., Mandal, I., Piazza, F., & Punk, M. (2018). Non-Fermi liquid at the FFLO quantum critical point. Physical Review B, 98(2): 024510. doi:10.1103/PhysRevB.98.024510.

Item is

Files

show Files
hide Files
:
1711.10514.pdf (Preprint), 964KB
Name:
1711.10514.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Pimenov, Dimitri1, Author           
Mandal, Ipsita2, Author           
Piazza, Francesco2, Author           
Punk, Matthias3, Author
Affiliations:
1IMPRS (International Max Planck Research School), Max Planck Institute of Quantum Optics, Max Planck Society, ou_3164443              
2Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              
3external, ou_persistent22              

Content

show
hide
Free keywords: -
 : Strongly correlated electrons
 Abstract: When a 2D superconductor is subjected to a strong in-plane magnetic field, Zeeman polarization of the Fermi surface can give rise to inhomogeneous FFLO order with a spatially modulated gap. Further increase of the magnetic field eventually drives the system into a normal metal state. Here, we perform a renormalization group analysis of this quantum phase transition, starting from an appropriate low-energy theory recently introduced in phys. Rev. B 93, 085112 (2016). We compute one-loop flow equations within the controlled dimensional regularization scheme with fixed dimension of Fermi surface, expanding in epsilon = 5/2 - d. We find a new stable non-Fermi-liquid fixed point and discuss its critical properties. One of the most interesting aspects of the FFLO non-Fermi-liquid scenario is that the quantum critical point is potentially naked, with the scaling regime observable down to arbitrary low temperatures. In order to study this possibility, we perform a general analysis of competing instabilities, which suggests that only charge density wave order is enhanced in the vicinity of the quantum critical point.

Details

show
hide
Language(s): eng - English
 Dates: 2018-07-162018-07-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000438673300008
DOI: 10.1103/PhysRevB.98.024510
arXiv: 1711.10514
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : -
Grant ID : -
Funding program : German Excellence Initiative
Funding organization : Nanosystems Initiative Munich (NIM)

Source 1

show
hide
Title: Physical Review B
  Abbreviation : Phys. Rev. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, NY : American Physical Society
Pages: - Volume / Issue: 98 (2) Sequence Number: 024510 Start / End Page: - Identifier: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008