Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A comparative study of multi-class support vector machines in the unifying framework of large margin classifiers

Guermeur, J., Elisseeff, A., & Zelus, D. (2005). A comparative study of multi-class support vector machines in the unifying framework of large margin classifiers. Applied Stochastic Models in Business and Industry, 21(2), 199-214. doi:10.1002/asmb.534.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Guermeur, J, Autor
Elisseeff, A1, 2, Autor           
Zelus, D, Autor
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Vapnik's statistical learning theory has mainly been developed for two types of problems: pattern recognition (computation of dichotomies) and regression (estimation of real‐valued functions). Only in recent years has multi‐class discriminant analysis been studied independently. Extending several standard results, among which a famous theorem by Bartlett, we have derived distribution‐free uniform strong laws of large numbers devoted to multi‐class large margin discriminant models. The capacity measure appearing in the confidence interval, a covering number, has been bounded from above in terms of a new generalized VC dimension. In this paper, the aforementioned theorems are applied to the architecture shared by all the multi‐class SVMs proposed so far, which provides us with a simple theoretical framework to study them, compare their performance and design new machines.

Details

ausblenden:
Sprache(n):
 Datum: 2005-04
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/asmb.534
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Applied Stochastic Models in Business and Industry
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : John Wiley & Sons
Seiten: - Band / Heft: 21 (2) Artikelnummer: - Start- / Endseite: 199 - 214 Identifikator: ISSN: 1524-1904
CoNE: https://pure.mpg.de/cone/journals/resource/954928624317