English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multiwaveform inference of gravitational waves

Ashton, G., & Khan, S. (2020). Multiwaveform inference of gravitational waves. Physical Review D, 101: 064037. doi:10.1103/PhysRevD.101.064037.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0004-E6D7-6 Version Permalink: http://hdl.handle.net/21.11116/0000-0006-0B6A-8
Genre: Journal Article

Files

show Files
hide Files
:
1910.09138.pdf (Preprint), 769KB
Name:
1910.09138.pdf
Description:
File downloaded from arXiv at 2019-10-24 10:22
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PhysRevD.101.064037.pdf (Publisher version), 913KB
 
File Permalink:
-
Name:
PhysRevD.101.064037.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Ashton, Gregory, Author
Khan, Sebastian1, Author              
Affiliations:
1Binary Merger Observations and Numerical Relativity, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_2461691              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc, Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE
 Abstract: Bayesian inference of gravitational wave signals is subject to systematic error due to modelling uncertainty in waveform signal models, coined approximants. A growing collection of approximants are available which use different approaches and make different assumptions to ease the process of model development. We provide a method to marginalize over the uncertainty in a set of waveform approximants by constructing a mixture-model multi-waveform likelihood. This method fits into existing workflows by determining the mixture parameters from the per-waveform evidences, enabling the production of marginalized combined sample sets from independent runs.

Details

show
hide
Language(s):
 Dates: 2019-10-202020
 Publication Status: Published in print
 Pages: 6 pages, 3 figures, 2 tables, submitted to PRD
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1910.09138
URI: http://arxiv.org/abs/1910.09138
DOI: 10.1103/PhysRevD.101.064037
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Other : Phys. Rev. D.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lancaster, Pa. : American Physical Society
Pages: - Volume / Issue: 101 Sequence Number: 064037 Start / End Page: - Identifier: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258