English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Experimental evolution of immunological specificity

Ferro, K., Peuß, R., Yang, W., Rosenstiel, P., Schulenburg, H., & Kurtz, J. (2019). Experimental evolution of immunological specificity. Proceedings of the National Academy of Sciences of the United States of America, 116(41), 20598-20604. doi:10.1073/pnas.1904828116.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
20598.full.pdf (Publisher version), 2MB
Name:
20598.full.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
Link (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Ferro, Kevin, Author
Peuß, Robert, Author
Yang, Wentao, Author
Rosenstiel, Philip, Author
Schulenburg, Hinrich1, Author           
Kurtz, Joachim, Author
Affiliations:
1Max Planck Fellow Group Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2600692              

Content

show
hide
Free keywords: immune priming; innate immunity; immune memory; immunological specificity; trained immunity
 Abstract: Innate immune memory (i.e., immune priming) is found in many invertebrates. In some cases, immune priming provides protection against infection only when the same bacteria are used for priming and challenge; that is, priming can be specific. However, we still know little about the conditions favoring the evolution of immunological specificity. We present evidence that immune priming and its specificity can rapidly evolve in an insect through experimental selection by repeated bacterial exposure. Our populations evolved treatment-specific differences in expression profiles of immune, metabolic, and transcription-regulatory genes, pointing to similar mechanisms acting in vertebrate trained immunity. Hence, immune memory combines deeply rooted resemblances across systems with enormous evolutionary plasticity.Memory and specificity are hallmarks of the adaptive immune system. Contrary to prior belief, innate immune systems can also provide forms of immune memory, such as immune priming in invertebrates and trained immunity in vertebrates. Immune priming can even be specific but differs remarkably in cellular and molecular functionality from the well-studied adaptive immune system of vertebrates. To date, it is unknown whether and how the level of specificity in immune priming can adapt during evolution in response to natural selection. We tested the evolution of priming specificity in an invertebrate model, the beetle Tribolium castaneum. Using controlled evolution experiments, we selected beetles for either specific or unspecific immune priming toward the bacteria Pseudomonas fluorescens, Lactococcus lactis, and 4 strains of the entomopathogen Bacillus thuringiensis. After 14 generations of host selection, specificity of priming was not universally higher in the lines selected for specificity, but rather depended on the bacterium used for priming and challenge. The insect pathogen B. thuringiensis induced the strongest priming effect. Differences between the evolved populations were mirrored in the transcriptomic response, revealing involvement of immune, metabolic, and transcription-modifying genes. Finally, we demonstrate that the induction strength of a set of differentially expressed immune genes predicts the survival probability of the evolved lines upon infection. We conclude that high specificity of immune priming can evolve rapidly for certain bacteria, most likely due to changes in the regulation of immune genes.

Details

show
hide
Language(s): eng - English
 Dates: 2019-03-212019-08-212019-09-232019-10-08
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1073/pnas.1904828116
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Acad. Sci. USA
  Other : Proc. Acad. Sci. U.S.A.
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : PNAS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 116 (41) Sequence Number: - Start / End Page: 20598 - 20604 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230