English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Tracing the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model

Drijfhout, S., Maier-Reimer, E., & Mikolajewicz, U. (1996). Tracing the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model. Journal of Geophysical Research C: Oceans, 101, 22563-22575. doi:10.1029/96JC02162.

Item is

Files

hide Files
:
m-r_e_tracing_the_conveyor_belt_in_the_hamburg_large-scale_geostrophic_ocean_general_circulation_model.pdf (Publisher version), 2MB
Name:
m-r_e_tracing_the_conveyor_belt_in_the_hamburg_large-scale_geostrophic_ocean_general_circulation_model.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

hide
 Creators:
Drijfhout, S.S.1, Author
Maier-Reimer, Ernst1, Author           
Mikolajewicz, Uwe1, Author           
Affiliations:
1MPI for Meteorology, Max Planck Society, ou_913545              

Content

hide
Free keywords: conveyor belt; Hamburg model; OGCM; water masses, Atlantic
 Abstract: The flow which constitutes the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model has been investigated with the help of a particle tracking method. In the region of North Atlantic Deep Water formation a thousand trajectories were calculated backward in time to the point where they upwell from the deep ocean. Both the three-dimensional velocity field and convective overturning have been used for this calculation. Together, the trajectories form a representative picture of the upper branch of the conveyor belt in the model. In the Atlantic Ocean the path and strength (17 Sv) of the conveyor belt in the model are found to be consistent with observations. All trajectories enter the South Atlantic via Drake Passage, as the model does not simulate any Agulhas leakage. Large changes in water masses occur in the South Atlantic midlatitudes and subtropical North Atlantic. Along its path in the Atlantic the water in the conveyor belt is transformed from Antarctic Intermediate Water to Central North Atlantic Water. On the average the timescale on which the water mass characteristics are approximately conserved is only a few years compared to the timescale of 70 years for the conveyor belt to cross the Atlantic. The ventilation of thermocline waters in the South Atlantic midlatitudes is overestimated in the model due to too much convective deepening of the winter mixed layer. As a result the fraction of the conveyor belt water flowing in the surface layer is also overestimated, along with integrated effects of atmospheric forcing. The abnormally strong water mass transformation in the South Atlantic might be related to the absence of Agulhas leakage in the model. Copyright 1996 by the American Geophysical Union.

Details

hide
Language(s): eng - English
 Dates: 1996
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1029/96JC02162
BibTex Citekey: Drijfhout199622563
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Journal of Geophysical Research C: Oceans
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Geophysical Union
Pages: - Volume / Issue: 101 Sequence Number: - Start / End Page: 22563 - 22575 Identifier: ISSN: 01480227