hide
Free keywords:
Mathematics, Algebraic Geometry, Number Theory
Abstract:
In this note, we prove the logarithmic $p$-adic comparison theorem for open rigid analytic varieties. We prove that a smooth rigid analytic variety with a strict simple normal crossing divisor is locally $K(\pi,1)$ (in a certain sense) with respect to $\mathbb{F}_p$-local systems and ramified coverings along the divisor. We follow Scholze's method to produce a pro-version of the Faltings site and use this site to prove a primitive comparison theorem in our
setting. After introducing period sheaves in our setting, we prove aforesaid comparison theorem.