English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Topology Counts: Force Distributions in Circular Spring Networks

Heidemann, K. M., Sageman-Furnas, A. O., Sharma, A., Rehfeldt, F., Schmidt, C. F., & Wardetzky, M. (2018). Topology Counts: Force Distributions in Circular Spring Networks. Physical Review Letters, 120(6): 068001. doi:10.1103/physrevlett.120.068001.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Heidemann, Knut M.1, Author              
Sageman-Furnas, Andrew O., Author
Sharma, Abhinav, Author
Rehfeldt, Florian, Author
Schmidt, Christoph F., Author
Wardetzky, Max, Author
Affiliations:
1Group Physics of social systems, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_3171842              

Content

show
hide
Free keywords: -
 Abstract: Filamentous polymer networks govern the mechanical properties of many biological materials. Force distributions within these networks are typically highly inhomogeneous, and, although the importance of force distributions for structural properties is well recognized, they are far from being understood quantitatively. Using a combination of probabilistic and graph-theoretical techniques, we derive force distributions in a model system consisting of ensembles of random linear spring networks on a circle. We show that characteristic quantities, such as the mean and variance of the force supported by individual springs, can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes. Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in an elastic spring network. Our results for 1D linear spring networks readily generalize to arbitrary dimensions.

Details

show
hide
Language(s):
 Dates: 2018
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1103/physrevlett.120.068001
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: 5 Volume / Issue: 120 (6) Sequence Number: 068001 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1