Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Non-Fourier description of heat flux evolution in 3D MHD simulations of the solar corona

Warnecke, J., & Bingert, S. (2020). Non-Fourier description of heat flux evolution in 3D MHD simulations of the solar corona. Geophysical and Astrophysical Fluid Dynamics, 114(1-2), 261-281. doi:10.1080/03091929.2019.1670173.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Warnecke, Jörn1, Autor           
Bingert, Sven, Autor
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The hot loop structures in the solar corona can be well modelled by three-dimensional magnetohydrodynamic simulations, where the corona is heated by field line braiding driven at the photosphere. To be able to reproduce the emission comparable to observations, one has to use realistic values for the Spitzer heat conductivity, which puts a large constraint on the time step of these simulations and make them therefore computationally expensive. Here, we present a non-Fourier description of the heat flux evolution, which allows us to speed up the simulations significantly. Together with the semi-relativistic Boris correction, we are able to limit the time step constraint of the Alfvén speed and speed up the simulations even further. We discuss the implementation of these two methods to the Pencil Code  and present their implications on the time step, and the temperature structures, the ohmic heating rate and the emission in simulations of the solar corona. Using a non-Fourier description of the heat flux evolution together with the Boris correction, we can increase the time step of the simulation significantly without moving far away from the reference solution. However, for values of the Alfvén speed limit of 3000km/s and below, the simulation moves away from the reference solution and produces much higher temperatures and much structures with stronger emission.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1080/03091929.2019.1670173
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Geophysical and Astrophysical Fluid Dynamics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Gordon and Breach Science Publishers.
Seiten: - Band / Heft: 114 (1-2) Artikelnummer: - Start- / Endseite: 261 - 281 Identifikator: ISSN: 0309-1929
CoNE: https://pure.mpg.de/cone/journals/resource/958480220815