English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Revealing dynamics of gene expression variability in cell state space

Grün, D. (2020). Revealing dynamics of gene expression variability in cell state space. Nature methods, 45-49. doi:org/10.1038/s41592-019-0632-3.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0005-98E1-1 Version Permalink: http://hdl.handle.net/21.11116/0000-0005-98E2-0
Genre: Journal Article

Files

show Files
hide Files
:
Grün et al..pdf (Publisher version), 2MB
Name:
Grün et al..pdf
Description:
Online ahead of print
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Grün, Dominic1, Author              
Affiliations:
1Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society, ou_2243642              

Content

show
hide
Free keywords: -
 Abstract: To decipher cell state transitions from single-cell transcriptomes it is crucial to quantify weak expression of lineage-determining factors, which requires computational methods that are sensitive to the variability of weakly expressed genes. Here, I introduce VarID, a computational method that identifies locally homogenous neighborhoods in cell state space, permitting the quantification of local variability in gene expression. VarID delineates neighborhoods with differential gene expression variability and reveals pseudo-temporal dynamics of variability during differentiation.

Details

show
hide
Language(s): eng - English
 Dates: 2019-11-182020-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: org/10.1038/s41592-019-0632-3
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature methods
  Other : Nature methods
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : Nature Pub. Group
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 45 - 49 Identifier: ISSN: 1548-7091
CoNE: https://pure.mpg.de/cone/journals/resource/111088195279556