Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Correlated electronic phases in twisted bilayer transition metal dichalcogenides

Wang, L., Shih, E.-M., Ghiotto, A., Xian, L. D., Rhodes, D. A., Tan, C., et al. (2020). Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Materials, 19(8), 861-866. doi:10.1038/s41563-020-0708-6.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
41563_2020_708_MOESM1_ESM.pdf (Ergänzendes Material), 5MB
Name:
41563_2020_708_MOESM1_ESM.pdf
Beschreibung:
Supplementary Information
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
s41563-020-0708-6.pdf (Verlagsversion), 2MB
Name:
s41563-020-0708-6.pdf
Beschreibung:
You have full access to this article via Max Planck Society Postpay Max Planck Digital Library
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
© The Author(s), under exclusive licence to Springer Nature Limited
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/1910.12147 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://dx.doi.org/10.1038/s41563-020-0708-6 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://dx.doi.org/10.1038/s41563-020-0733-5 (Ergänzendes Material)
Beschreibung:
News & Views article "Two monolayers is greater than a bilayer" by Junwei Liu
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Wang, L.1, 2, Autor
Shih, E.-M.2, Autor
Ghiotto, A.2, Autor
Xian, L. D.3, Autor           
Rhodes, D. A.4, Autor
Tan, C.4, 5, Autor
Claassen, M.6, Autor
Kennes, D. M.3, 7, Autor
Bai, Y.8, Autor
Kim, B.4, Autor
Watanabe, K.9, Autor
Taniguchi, T.9, Autor
Zhu, X.8, Autor
Hone, J.4, Autor
Rubio, A.3, 6, 10, Autor           
Pasupathy, A.2, Autor
Dean, C. R.2, Autor
Affiliations:
1National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, ou_persistent22              
2Department of Physics, Columbia University, New York, ou_persistent22              
3Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
4Department of Mechanical Engineering, Columbia University, ou_persistent22              
5Department of Electrical Engineering, Columbia University, ou_persistent22              
6Center for Computational Quantum Physics, Flatiron Institute, ou_persistent22              
7Institut für Theorie der Statistischen Physik, RWTH Aachen University 52056 Aachen, Germany and JARA-Fundamentals of Future Information Technology, ou_persistent22              
8Department of Chemistry, Columbia University, New York, ou_persistent22              
9National Institute for Materials Science, Tsukuba, ou_persistent22              
10Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In narrow electron bands in which the Coulomb interaction energy becomes comparable to the bandwidth, interactions can drive new quantum phases. Such flat bands in twisted graphene-based systems result in correlated insulator, superconducting and topological states. Here we report evidence of low-energy flat bands in twisted bilayer WSe2, with signatures of collective phases observed over twist angles that range from 4 to 5.1°. At half-band filling, a correlated insulator appeared that is tunable with both twist angle and displacement field. At a 5.1° twist, zero-resistance pockets were observed on doping away from half filling at temperatures below 3 K, which indicates a possible transition to a superconducting state. The observation of tunable collective phases in a simple band, which hosts only two holes per unit cell at full filling, establishes twisted bilayer transition metal dichalcogenides as an ideal platform to study correlated physics in two dimensions on a triangular lattice.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-12-222020-05-112020-06-222020-08-01
 Publikationsstatus: Erschienen
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 1910.12147
DOI: 10.1038/s41563-020-0708-6
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : Studies of the tunable correlated states in the twisted bilayer WSe2 were supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. The synthesis of the WSe2 crystals was supported by the NSF MRSEC programme through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). The theoretical work was supported by the European Research Council (ERC-2015-AdG694097), cluster of Excellence AIM, SFB925 and Grupos Consolidados (IT1249-19). The Flatiron Institute is a division of the Simons Foundation. We acknowledge support from the Max Planck–New York Center for Non-Equilibrium Quantum Phenomena. We thank F. Wu and L. Fu for helpful discussions. We also thank O. Stapleton, P. Wu and Z. Zheng for help in the device fabrication.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Nature Materials
  Kurztitel : Nat. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Pub. Group
Seiten: - Band / Heft: 19 (8) Artikelnummer: - Start- / Endseite: 861 - 866 Identifikator: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000