English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Correlated electronic phases in twisted bilayer transition metal dichalcogenides

Wang, L., Shih, E.-M., Ghiotto, A., Xian, L. D., Rhodes, D. A., Tan, C., et al. (2020). Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Materials, 19(8), 861-866. doi:10.1038/s41563-020-0708-6.

Item is

Files

show Files
hide Files
:
41563_2020_708_MOESM1_ESM.pdf (Supplementary material), 5MB
Name:
41563_2020_708_MOESM1_ESM.pdf
Description:
Supplementary Information
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
s41563-020-0708-6.pdf (Publisher version), 2MB
Name:
s41563-020-0708-6.pdf
Description:
You have full access to this article via Max Planck Society Postpay Max Planck Digital Library
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
© The Author(s), under exclusive licence to Springer Nature Limited
License:
-

Locators

show
hide
Locator:
https://arxiv.org/abs/1910.12147 (Preprint)
Description:
-
OA-Status:
Not specified
Locator:
https://dx.doi.org/10.1038/s41563-020-0708-6 (Publisher version)
Description:
-
OA-Status:
Not specified
Locator:
https://dx.doi.org/10.1038/s41563-020-0733-5 (Supplementary material)
Description:
News & Views article "Two monolayers is greater than a bilayer" by Junwei Liu
OA-Status:
Not specified

Creators

show
hide
 Creators:
Wang, L.1, 2, Author
Shih, E.-M.2, Author
Ghiotto, A.2, Author
Xian, L. D.3, Author           
Rhodes, D. A.4, Author
Tan, C.4, 5, Author
Claassen, M.6, Author
Kennes, D. M.3, 7, Author
Bai, Y.8, Author
Kim, B.4, Author
Watanabe, K.9, Author
Taniguchi, T.9, Author
Zhu, X.8, Author
Hone, J.4, Author
Rubio, A.3, 6, 10, Author           
Pasupathy, A.2, Author
Dean, C. R.2, Author
Affiliations:
1National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, ou_persistent22              
2Department of Physics, Columbia University, New York, ou_persistent22              
3Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
4Department of Mechanical Engineering, Columbia University, ou_persistent22              
5Department of Electrical Engineering, Columbia University, ou_persistent22              
6Center for Computational Quantum Physics, Flatiron Institute, ou_persistent22              
7Institut für Theorie der Statistischen Physik, RWTH Aachen University 52056 Aachen, Germany and JARA-Fundamentals of Future Information Technology, ou_persistent22              
8Department of Chemistry, Columbia University, New York, ou_persistent22              
9National Institute for Materials Science, Tsukuba, ou_persistent22              
10Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: In narrow electron bands in which the Coulomb interaction energy becomes comparable to the bandwidth, interactions can drive new quantum phases. Such flat bands in twisted graphene-based systems result in correlated insulator, superconducting and topological states. Here we report evidence of low-energy flat bands in twisted bilayer WSe2, with signatures of collective phases observed over twist angles that range from 4 to 5.1°. At half-band filling, a correlated insulator appeared that is tunable with both twist angle and displacement field. At a 5.1° twist, zero-resistance pockets were observed on doping away from half filling at temperatures below 3 K, which indicates a possible transition to a superconducting state. The observation of tunable collective phases in a simple band, which hosts only two holes per unit cell at full filling, establishes twisted bilayer transition metal dichalcogenides as an ideal platform to study correlated physics in two dimensions on a triangular lattice.

Details

show
hide
Language(s): eng - English
 Dates: 2019-12-222020-05-112020-06-222020-08-01
 Publication Status: Issued
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1910.12147
DOI: 10.1038/s41563-020-0708-6
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Materials
  Abbreviation : Nat. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Pub. Group
Pages: - Volume / Issue: 19 (8) Sequence Number: - Start / End Page: 861 - 866 Identifier: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000