Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  The specific angular momentum radial profile in dense cores: improved initial conditions for disk formation

Pineda, J. E., Zhao, B., Schmiedeke, A., Segura-Cox, D. M., Caselli, P., Myers, P. C., et al. (2019). The specific angular momentum radial profile in dense cores: improved initial conditions for disk formation. The Astrophysical Journal, 882(1): 103. doi:10.3847/1538-4357/ab2cd1.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
The Specific Angular Momentum Radial Profile in Dense Cores Improved Initial Conditions for Disk Formation.pdf (beliebiger Volltext), 2MB
 
Datei-Permalink:
-
Name:
The Specific Angular Momentum Radial Profile in Dense Cores Improved Initial Conditions for Disk Formation.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Pineda, Jaime E.1, Autor           
Zhao, Bo1, Autor           
Schmiedeke, Anika1, Autor           
Segura-Cox, Dominique M.1, Autor           
Caselli, Paola1, Autor           
Myers, Philip C., Autor
Tobin, John J., Autor
Dunham, Michael, Autor
Affiliations:
1Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society, ou_1950287              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The determination of the specific angular momentum radial profile, j(r), in the early stages of star formation is crucial to constrain star and circumstellar disk formation theories. The specific angular momentum is directly related to the largest Keplerian disk possible, and it could constrain the angular momentum removal mechanism. We determine j(r) towards two Class 0 objects and a first hydrostatic core candidate in the Perseus cloud, which is consistent across all three sources and well fit with a single power-law relation between 800 and 10,000\,au: jfit(r)=10−3.60±0.15(r/1,000au)1.80±0.04 km s−1 pc. This power-law relation is in between solid body rotation (∝r2) and pure turbulence (∝r1.5). This strongly suggests that even at 1,000\,au, the influence of the dense core's initial level of turbulence or the connection between core and the molecular cloud is still present. The specific angular momentum at 10,000\,au is ≈3× higher than previously estimated, while at 1,000\,au it is lower by 2×. We do not find a region of conserved specific angular momentum, although it could still be present at a smaller radius. We estimate an upper limit to the largest Keplerian disk radius of 60\,au, which is small but consistent with published upper limits. Finally, these results suggest that more realistic initial conditions for numerical simulations of disk formation are needed. Some possible solutions include: a) use a larger simulation box to include some level of driven turbulence or connection to the parental cloud, or b) incorporate the observed j(r) to setup the dense core kinematics initial conditions.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-09-06
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3847/1538-4357/ab2cd1
Anderer: LOCALID: 3179201
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Astrophysical Journal
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol; Vienna : IOP Publishing; IAEA
Seiten: - Band / Heft: 882 (1) Artikelnummer: 103 Start- / Endseite: - Identifikator: ISSN: 0004-637X
CoNE: https://pure.mpg.de/cone/journals/resource/954922828215_3