Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons

Van Tol, A., Roschger, A., Repp, F., Chen, J., Roschger, P., Berzlanovich, A., et al. (2020). Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons. Biomechanics and Modeling in Mechanobiology, 19(3), 823-840. doi:10.1007/s10237-019-01250-1.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 3MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Van Tol, Alexander1, Autor           
Roschger, Andreas2, Autor           
Repp, Felix1, Autor           
Chen, J.2, Autor
Roschger, P., Autor
Berzlanovich, A., Autor
Gruber, G. M., Autor
Fratzl, Peter3, Autor           
Weinkamer, Richard1, Autor           
Affiliations:
1Richard Weinkamer, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863295              
2Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              
3Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: A popular hypothesis explains the mechanosensitivity of bone due to osteocytes sensing the load-induced flow of interstitial fluid squeezed through the lacunocanalicular network (LCN).However, the way in which the intricate structure of the LCN influences fluid flow through the network is largely unexplored. We therefore aimed to quantify fluid flow through real LCNs from human osteons using a combination of experimental and computational techniques. Bone samples were stained with rhodamine to image the LCN with 3D confocal microscopy. Image analysis was then performed to convert image stacks into mathematical network structures, in order to estimate the intrinsic permeability of the osteons as well as the load-induced fluid flow using hydraulic circuit theory. Fluid flow was studied in both ordinary osteons with a rather homogeneous LCN as well as a frequent subtype of osteons—so-called osteon-in-osteons—which are characterized by a ring-like zone of low network connectivity between the inner and the outer parts of these osteons. We analyzed 8 ordinary osteons and 9 osteon-in-osteons from the femur midshaft of a 57-year-old woman without any known disease. While the intrinsic permeability was 2.7 times smaller in osteon-in-osteons compared to ordinary osteons, the load-induced fluid velocity was 2.3 times higher. This increased fluid velocity in osteon-in-osteons can be explained by the longer path length, needed to cross the osteon from the cement line to the Haversian canal, including more fluid-filled lacunae and canaliculi. This explanation was corroborated by the observation that a purely structural parameter—the mean path length to the Haversian canal—is an excellent predictor for the average fluid flow velocity. We conclude that osteon-in-osteons may be particularly significant contributors to the mechanosensitivity of cortical bone, due to the higher fluid flow in this type of osteons.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-11-282020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1007/s10237-019-01250-1
PMID: 0579
Anderer: M:\BM-Publications\2019\VanTolBMMB_FluidFlowHumanOsteons
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biomechanics and Modeling in Mechanobiology
  Andere : Biomech. Model. Mechanobiol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Berlin : Springer
Seiten: - Band / Heft: 19 (3) Artikelnummer: - Start- / Endseite: 823 - 840 Identifikator: ISSN: 1617-7959