Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  IMEM2: a meteoroid environment model for the inner solar system

Soja, R. H., Grün, E., Strub, P., Sommer, M., Millinger, M., Vaubaillon, J., et al. (2019). IMEM2: a meteoroid environment model for the inner solar system. Astronomy and Astrophysics, 628: A109. doi:10.1051/0004-6361/201834892.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Soja, R. H.1, Autor
Grün, E.2, Autor           
Strub, P.1, Autor
Sommer, M.1, Autor
Millinger, M.1, Autor
Vaubaillon, J.1, Autor
Alius, W.1, Autor
Camodeca, G.1, Autor
Hein, F.1, Autor
Laskar, J.1, Autor
Gastineau, M.1, Autor
Fienga, A.1, Autor
Schwarzkopf, G. J.1, Autor
Herzog, J.1, Autor
Gutsche, K.1, Autor
Skuppin, N.1, Autor
Srama, R.1, Autor
Affiliations:
1external, ou_persistent22              
2Ralf Srama - Heidelberg Dust Group, Research Groups, MPI for Nuclear Physics, Max Planck Society, ou_907558              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Context. The interplanetary dust complex is currently understood to be largely the result of dust production from Jupiter-family comets, with contributions also from longer-period comets (Halley- and Oort-type) and collisionally produced asteroidal dust.
Aims. Here we develop a dynamical model of the interplanetary dust cloud from these source populations in order to develop a risk and hazard assessment tool for interplanetary meteoroids in the inner solar system.
Methods. The long-duration (1 Myr) integrations of dust grains from Jupiter-family and Halley-type comets and main belt asteroids were used to generate simulated distributions that were compared to COBE infrared data, meteor data, and the diameter distribution of lunar microcraters. This allowed the constraint of various model parameters.
Results. We present here the first attempt at generating a model that can simultaneously describe these sets of observations. Extended collisional lifetimes are found to be necessary for larger (radius > 150 mu m) particles. The observations are best fit with a differential size distribution that is steep (slope = 5) for radii > 150 mu m, and shallower (slope = 2) for smaller particles. At the Earth the model results in similar to 90-98% Jupiter-family comet meteoroids, and small contributions from asteroidal and Halley-type comet particles. In COBE data we find an approximately 80% contribution from Jupiter-family comet meteoroids and 20% from asteroidal particles. The resulting flux at the Earth is mostly within a factor of about two to three of published measurements.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-08-15
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1051/0004-6361/201834892
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Astronomy and Astrophysics
  Andere : Astron. Astrophys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Les Ulis Cedex A France : EDP Sciences
Seiten: - Band / Heft: 628 Artikelnummer: A109 Start- / Endseite: - Identifikator: Anderer: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1