Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Testing Stellar Evolution with Asteroseismic Inversions of a Main-sequence Star Harboring a Small Convective Core

Bellinger, E. P., Basu, S., Hekker, S., & Christensen-Dalsgaard, J. (2019). Testing Stellar Evolution with Asteroseismic Inversions of a Main-sequence Star Harboring a Small Convective Core. The Astrophysical Journal, 885(2): 143. doi:10.3847/1538-4357/ab4a0d.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bellinger, Earl P., Autor
Basu, Sarbani, Autor
Hekker, Saskia1, Autor           
Christensen-Dalsgaard, Jørgen, Autor
Affiliations:
1Max Planck Research Group in Stellar Ages and Galactic Evolution (SAGE), Max Planck Institute for Solar System Research, Max Planck Society, ou_2265636              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Asteroseismology ; Stellar astronomy ; Stellar oscillations ; Stellar evolution ; Stellar physics ; Stellar evolutionary models ; Solar analogs ; Stellar interiors ; Stellar cores ; Stellar structures ; Stellar convective zones ; Astrophysical processes
 Zusammenfassung: The goal of stellar evolution theory is to predict the structure of stars throughout their lifetimes. Usually, these predictions can be assessed only indirectly, for example by comparing predicted and observed effective temperatures and luminosities. Thanks now to asteroseismology, which can reveal the internal structure of stars, it becomes possible to compare the predictions from stellar evolution theory to actual stellar structures. In this work, we present an inverse analysis of the oscillation data from the solar-type star KIC 6225718, which was observed by the Kepler space observatory during its nominal mission. As its mass is about 20% greater than solar, this star is predicted to transport energy by convection in its nuclear-burning core. We find significant differences between the predicted and actual structure of the star in the radiative interior near to the convective core. In particular, the predicted sound speed is higher than observed in the deep interior of the star, and too low at a fractional radius of 0.25 and beyond. The cause of these discrepancies is unknown, and is not remedied by known physics in the form of convective overshooting or elemental diffusion.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3847/1538-4357/ab4a0d
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Astrophysical Journal
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol; Vienna : IOP Publishing; IAEA
Seiten: - Band / Heft: 885 (2) Artikelnummer: 143 Start- / Endseite: - Identifikator: ISSN: 0004-637X
CoNE: https://pure.mpg.de/cone/journals/resource/954922828215_3