English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Assessing durum wheat ear and leaf metabolomes in the field through hyperspectral data

Vergara-Diaz, O., Vatter, T., Kefauver, S. C., Obata, T., Fernie, A. R., & Araus, J. L. (2020). Assessing durum wheat ear and leaf metabolomes in the field through hyperspectral data. The Plant Journal, 102(3), 615-630. doi:10.1111/tpj.14636.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0005-5D3F-E Version Permalink: http://hdl.handle.net/21.11116/0000-0006-5CF6-E
Genre: Journal Article

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Vergara-Diaz, Omar1, Author
Vatter, Thomas1, Author
Kefauver, Shawn Carlisle1, Author
Obata, T.2, Author              
Fernie, A. R.2, Author              
Araus, José Luis1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_1753339              

Content

show
hide
Free keywords: Breeding, ear bracts, flag leaf, LASSO, metabolome, yield, spectroscopy, wheat
 Abstract: Abstract Hyperspectral techniques are currently used to retrieve information concerning plant biophysical traits, predominantly targeting pigments, water and nitrogen-protein contents, structural elements, and the leaf area index. Even so,hyperspectral data could be more extensively exploited toovercomethe breeding challenges being faced under global climate change by advancing high throughput field phenotyping. In this study, we explore the potential of field spectroscopy to predict the metabolite profiles in flag leaves and ear bracts in durum wheat. The full range reflectance spectra (VIS-NIR-SWIR) of flag leaves, ears and canopies were recorded in a collection of contrasting genotypes grown in four environments under different water regimes. GC-MS metabolite profiles were analysed in the flag leaves, ear bracts, glumes and lemmas. The results from regression models exceeded 50% of the explained variation (adj-R2 in the validation sets) for at least 15 metabolites in each plant organ, whereas their errors were considerably low. The best regressions were obtained for malate (82%), glycerate and serine (63%) in leaves; myo-inositol (81%) in lemmas; glycolate (80%) in glumes; sucrose in leaves and glumes (68%); GABA in leaves and glumes (61% and 71%, respectively); proline and glucose in lemmas (74% and 71%, respectively) and glumes (72% and 69%, respectively). The selection of wavebands in the models and the performance of the models based on canopy and VIS-organ spectra and yield prediction are discussed. We feel that this technique will likely be of interest due to its broad applicability in ecophysiology research, plant breeding programs andthe agri-food industry. Table S1. Descriptive statistics of metabolite content data. Figure S1. Boxplot of metabolite content variation.

Details

show
hide
Language(s): eng - English
 Dates: 20192020
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1111/tpj.14636
BibTex Citekey: doi:10.1111/tpj.14636
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Plant Journal
  Other : Plant J.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Blackwell Science
Pages: - Volume / Issue: 102 (3) Sequence Number: - Start / End Page: 615 - 630 Identifier: ISSN: 0960-7412
CoNE: https://pure.mpg.de/cone/journals/resource/954925579095_1