English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Effect of chemical and hydrostatic pressure on the coupled magnetostructural transition of Ni-Mn-In Heusler alloys

Devi, P., Salazar Mejía, C., Caron, L., Singh, S., Nicklas, M., & Felser, C. (2019). Effect of chemical and hydrostatic pressure on the coupled magnetostructural transition of Ni-Mn-In Heusler alloys. Physical Review Materials, 3(12): 122401, pp. 1-7. doi:10.1103/PhysRevMaterials.3.122401.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0005-69A0-0 Version Permalink: http://hdl.handle.net/21.11116/0000-0005-C111-D
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Devi, P.1, Author              
Salazar Mejía, C.2, Author
Caron, L.2, Author
Singh, Sanjay1, Author              
Nicklas, M.3, Author              
Felser, C.4, Author              
Affiliations:
1Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863425              
2External Organizations, ou_persistent22              
3Michael Nicklas, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863472              
4Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              

Content

show
hide
Free keywords: -
 Abstract: Ni-Mn-In magnetic shape-memory Heusler alloys exhibit generally a large thermal hysteresis at their first-order martensitic phase transition which hinders a technological application in magnetic refrigeration. By optimizing the Cu content in Ni2CuxMn1.4-xIn0.6, we obtained a thermal hysteresis of the martensitic phase transition in Ni2Cu0.2Mn1.2In0.6 of only 6 K. We can explain this very small hysteresis by an almost perfect habit plane at the interface of martensite and austenite phases. Application of hydrostatic pressure does not reduce the hysteresis further, but shifts the martensitic transition close to room temperature. The isothermal entropy change does not depend on warming or cooling protocols and is pressure independent. Experiments in pulsed-magnetic fields on Ni2Cu0.2Mn1.2In0.6 find a reversible magnetocaloric effect with a maximum adiabatic temperature change of -13 K.

Details

show
hide
Language(s): eng - English
 Dates: 2019-12-102019-12-10
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Materials
  Abbreviation : Phys. Rev. Mat.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: College Park, MD : American Physical Society
Pages: - Volume / Issue: 3 (12) Sequence Number: 122401 Start / End Page: 1 - 7 Identifier: ISSN: 2475-9953
CoNE: https://pure.mpg.de/cone/journals/resource/2475-9953