Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Coiled coils as mechanical building blocks Coiled Coils als mechanische Bausteine

López García, P. (2019). Coiled coils as mechanical building blocks Coiled Coils als mechanische Bausteine. PhD Thesis, Universität Potsdam, Potsdam. Retrieved from https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/42956.

Item is


show Files
hide Files
Thesis.pdf (Any fulltext), 11MB
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
Copyright Info:




López García, Patricia1, Author              
1Kerstin Blank, Mechano(bio)chemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2301698              


Free keywords: biochemistry, peptides, coiled coils, mechanics, single-molecule force spectroscopy, Biochemie, Peptide, Coiled coils, mechanische Stabilität, Einzelmolekülkraftspektroskopie
 Abstract: The natural abundance of Coiled Coil (CC) motifs in cytoskeleton and extracellular matrix proteins suggests that CCs play an important role as passive (structural) and active (regulatory) mechanical building blocks. CCs are self-assembled superhelical structures consisting of 2-7 α-helices. Self-assembly is driven by hydrophobic and ionic interactions, while the helix propensity of the individual helices contributes additional stability to the structure. As a direct result of this simple sequence-structure relationship, CCs serve as templates for protein design and sequences with a pre-defined thermodynamic stability have been synthesized de novo. Despite this quickly increasing knowledge and the vast number of possible CC applications, the mechanical function of CCs has been largely overlooked and little is known about how different CC design parameters determine the mechanical stability of CCs. Once available, this knowledge will open up new applications for CCs as nanomechanical building blocks, e.g. in biomaterials and nanobiotechnology. With the goal of shedding light on the sequence-structure-mechanics relationship of CCs, a well-characterized heterodimeric CC was utilized as a model system. The sequence of this model system was systematically modified to investigate how different design parameters affect the CC response when the force is applied to opposing termini in a shear geometry or separated in a zipper-like fashion from the same termini (unzip geometry). The force was applied using an atomic force microscope set-up and dynamic single-molecule force spectroscopy was performed to determine the rupture forces and energy landscape properties of the CC heterodimers under study. Using force as a denaturant, CC chain separation is initiated by helix uncoiling from the force application points. In the shear geometry, this allows uncoiling-assisted sliding parallel to the force vector or dissociation perpendicular to the force vector. Both competing processes involve the opening of stabilizing hydrophobic (and ionic) interactions. Also in the unzip geometry, helix uncoiling precedes the rupture of hydrophobic contacts. In a first series of experiments, the focus was placed on canonical modifications in the hydrophobic core and the helix propensity. Using the shear geometry, it was shown that both a reduced core packing and helix propensity lower the thermodynamic and mechanical stability of the CC; however, with different effects on the energy landscape of the system. A less tightly packed hydrophobic core increases the distance to the transition state, with only a small effect on the barrier height. This originates from a more dynamic and less tightly packed core, which provides more degrees of freedom to respond to the applied force in the direction of the force vector. In contrast, a reduced helix propensity decreases both the distance to the transition state and the barrier height. The helices are ‘easier’ to unfold and the remaining structure is less thermodynamically stable so that dissociation perpendicular to the force axis can occur at smaller deformations. Having elucidated how canonical sequence modifications influence CC mechanics, the pulling geometry was investigated in the next step. Using one and the same sequence, the force application points were exchanged and two different shear and one unzipping geometry were compared. It was shown that the pulling geometry determines the mechanical stability of the CC. Different rupture forces were observed in the different shear as well as in the unzipping geometries, suggesting that chain separation follows different pathways on the energy landscape. Whereas the difference between CC shearing and unzipping was anticipated and has also been observed for other biological structures, the observed difference for the two shear geometries was less expected. It can be explained with the structural asymmetry of the CC heterodimer. It is proposed that the direction of the α-helices, the different local helix propensities and the position of a polar asparagine in the hydrophobic core are responsible for the observed difference in the chain separation pathways. In combination, these factors are considered to influence the interplay between processes parallel and perpendicular to the force axis. To obtain more detailed insights into the role of helix stability, helical turns were reinforced locally using artificial constraints in the form of covalent and dynamic ‘staples’. A covalent staple bridges to adjacent helical turns, thus protecting them against uncoiling. The staple was inserted directly at the point of force application in one helix or in the same terminus of the other helix, which did not experience the force directly. It was shown that preventing helix uncoiling at the point of force application reduces the distance to the transition state while slightly increasing the barrier height. This confirms that helix uncoiling is critically important for CC chain separation. When inserted into the second helix, this stabilizing effect is transferred across the hydrophobic core and protects the force-loaded turns against uncoiling. If both helices were stapled, no additional increase in mechanical stability was observed. When replacing the covalent staple with a dynamic metal-coordination bond, a smaller decrease in the distance to the transition was observed, suggesting that the staple opens up while the CC is under load. Using fluorinated amino acids as another type of non-natural modification, it was investigated how the enhanced hydrophobicity and the altered packing at the interface influences CC mechanics. The fluorinated amino acid was inserted into one central heptad of one or both α-helices. It was shown that this substitution destabilized the CC thermodynamically and mechanically. Specifically, the barrier height was decreased and the distance to the transition state increased. This suggests that a possible stabilizing effect of the increased hydrophobicity is overruled by a disturbed packing, which originates from a bad fit of the fluorinated amino acid into the local environment. This in turn increases the flexibility at the interface, as also observed for the hydrophobic core substitution described above. In combination, this confirms that the arrangement of the hydrophobic side chains is an additional crucial factor determining the mechanical stability of CCs. In conclusion, this work shows that knowledge of the thermodynamic stability alone is not sufficient to predict the mechanical stability of CCs. It is the interplay between helix propensity and hydrophobic core packing that defines the sequence-structure-mechanics relationship. In combination, both parameters determine the relative contribution of processes parallel and perpendicular to the force axis, i.e. helix uncoiling and uncoiling-assisted sliding as well as dissociation. This new mechanistic knowledge provides insight into the mechanical function of CCs in tissues and opens up the road for designing CCs with pre-defined mechanical properties. The library of mechanically characterized CCs developed in this work is a powerful starting point for a wide spectrum of applications, ranging from molecular force sensors to mechanosensitive crosslinks in protein nanostructures and synthetic extracellular matrix mimics. Das „Coiled Coil“ (CC) Faltungsmotiv ist Bestandteil vieler Proteine im Zytoskelett und der extrazellulären Matrix. Es kann daher davon ausgegangen werden, dass CCs essentielle mechanische Bausteine darstellen, die sowohl passive (strukturelle) als auch aktive (regulatorische) Aufgaben erfüllen. CCs bestehen aus 2-7 α-helikalen Untereinheiten, die eine superhelikale Struktur formen. Die Faltung und Stabilität der Superhelix wird durch hydrophobe und ionische Wechselwirkungen bestimmt, sowie durch die Helixpropensität der einzelnen Aminosäuren. Auf der Grundlage dieser gut verstandenen Struktur-Funktionsbeziehungen werden CCs häufig als Vorlage für das de novo Proteindesign genutzt. Trotz stetig wachsender wissenschaftlicher Erkenntnisse und der mannigfaltigen Anwendungsmöglichkeiten von CCs, ist ihre mechanische Funktion noch weitestgehend unerforscht. Insbesondere ist der Zusammenhang zwischen der Aminosäuresequenz und der mechanischen Stabilität kaum bekannt. Dieses Wissen ist jedoch essentiell für die Anwendung von CCs als nanomechanische Bausteine. Um die mechanischen Struktur-Funktionsbeziehungen von CCs zu beleuchten, wurde ein gut charakterisiertes CC-Heterodimer als Modellsystem genutzt. Dessen Sequenz wurde systematisch modifiziert, um den Einfluss verschiedener Strukturparameter auf die mechanische Stabilität des CCs zu untersuchen. Mittels Rasterkraftmikroskop-basierter Einzelmolekülkraftspektroskopie wurden die Kraftangriffspunkte so platziert, dass das CC entweder geschert oder wie ein Reißverschluss geöffnet wurde („Unzip“-Geometrie). Dabei wurde die Kraft bestimmt, die zur Separation der beiden Helices benötigt wird. Diese sogenannte Abrisskraft wurde bei verschiedenen Ladungsraten gemessen, um Rückschlüsse auf die Energielandschaft der CCs zu ziehen. Die anliegende Kraft führt zunächst zur Entfaltung der Helix-Enden an den Kraftangriffspunkten. Diese partielle Entfaltung ermöglicht in der Scher-Geometrie zwei Mechanismen, die letztlich zur Separation der Helices führen: die Verschiebung der Helices entlang des Kraftvektors und die Dissoziation senkrecht zur angelegten Kraft. Auch in der „Unzip“-Geometrie geht die teilweise Entfaltung der Dissoziation voraus. Zunächst wurde der Einfluss von hydrophoben Wechselwirkungen im Kern des CCs sowie der Helixpropensität systematisch untersucht. In der verwendeten Scher-Geometrie führten entsprechende Aminosäuremodifikationen zu einer Änderung der Abrisskraft des CCs, wobei spezifische Unterschiede in der Energielandschaft festzustellen sind. Weniger dicht gepackte hydrophobe Wechselwirkungen verlängern hauptsächlich den Abstand zum Übergangszustand, da sie die Freiheitsgrade des Entfaltungspfades erhöhen. Eine verringerte Helixpropensität verringert sowohl die Aktivierungsenergie als auch den Abstand zum Übergangszustand. Die niedrige thermodynamische Stabilität dieser Modifikation führt dazu, dass weniger Kraft angewandt werden muss, um die Dissoziation der Helices senkrecht zum Kraftvektor zu erreichen. Mit diesem Wissen über den Einfluss der Helixpropensität und der hydrophoben Wechselwirkungen, wurde anschließend die mechanische Entfaltung in zwei verschiedenen Scher-Geometrien, sowie der „Unzip“-Geometrie untersucht. Dazu wurde jeweils die gleiche Sequenz verwendet, wobei nur die Kraftangriffspunkte modifiziert wurden. Die Ergebnisse zeigen, dass die Positionierung der Kraftangriffspunkte essentiell für die gemessene mechanische Stabilität des CC ist. Wie auch in anderen biologischen Strukturen zu beobachten, besteht ein Unterschied zwischen Scher- und „Unzip“-Geometrie. Jedoch weist das CC auch in den beiden Scher-Geometrien Unterschiede in der Stabilität auf. Dies ist auf eine Asymmetrie der ansonsten hochrepetitiven Sequenz zurückzuführen. Die Rolle der Helixstabilität wurde durch die lokale Stabilisierung von Helixwindungen mit kovalenten und dynamischen molekularen Klammern genauer erforscht. Die Klammern verknüpfen zwei benachbarte Windungen und stabilisieren diese so gegen die mechanische Entfaltung. Die kovalente Klammer wurde entweder direkt am Kraftangriffspunkt eingefügt oder in der Partnerhelix, an der die Kraft nicht direkt angreift. Es wurde gezeigt, dass die Klammern die mechanische Stabilität des CCs erhöhen. Dem liegen eine Verringerung des Abstands zum Übergangszustand und eine leichte Erhöhung der Energiebarriere zu Grunde. Helix-stabilisierende Effekte können durch die hydrophoben Wechselwirkungen auf die Partnerhelix übertragen werden. Das Klammern beider Helices führte nicht zu einer weiteren Erhöhung der mechanischen Stabilität. Bei Einfügen einer dynamischen Klammer direkt am Kraftangriffspunkt fällt die Verringerung des Abstands zum Übergangszustand kleiner aus. Dies ist auf das Öffnen der reversiblen Klammer bei Krafteinwirkung zurückzuführen. Auch die Rolle der hydrophoben Wechselwirkungen wurde unter Verwendung einer nicht-natürlichen Modifikation detaillierter untersucht. Dazu wurde eine fluorinierte Aminosäure im zentralen Teil des CCs eingebaut. Die fluorinierte Aminosäure ist hydrophober als die Ursprüngliche und verändert die Packung der Seitenketten im hydrophoben Kern. Die Anwesenheit der fluorinierten Aminosäure in einer der beiden Helices führte zu einer Erniedrigung der Aktivierungsenergie sowie zu einer gleichzeitigen Erhöhung des Abstandes zum Übergangszustand. Dies zeigt, dass die fluorinierte Aminosäure in erster Linie die Packung der hydrophoben Aminosäuren stört, während der Einfluss des hydrophoben Effekts ehr gering ist. Die fluorinierte Aminosäure kann nicht gut in die lokale Umgebung der anderen Aminosäuren integriert werden und zeigt so, dass die Anordnung und Wechselwirkung der hydrophoben Aminosäuren im Kern essentiell für die mechanische Stabilität von CCs ist. Zusammenfassend zeigt diese Arbeit, dass allein auf Grundlage der thermodynamischen Stabilität nicht auf die mechanische Stabilität von CCs geschlossen werden kann. Das Zusammenspiel zwischen Helixstabilität und hydrophoben Wechselwirkungen ist maßgebend um die Zusammenhänge zwischen Sequenz, Struktur und mechanischer Stabilität von CCs zu verstehen. Beide Faktoren tragen zu den Entfaltungsmechanismen parallel und senkrecht zur Kraftrichtung bei. Diese neuen mechanistischen Einblicke in die sequenzabhängige mechanische Stabilität von CCs ermöglichen die Entwicklung von CCs mit maßgeschneiderten mechanischen Eigenschaften. Die hier charakterisierte CC-Bibliothek ist ein hervorragender Ausgangspunkt für ein breites Spektrum an potentiellen Anwendungen, von molekularen Kraftsensoren bis zu mechanosensitiven Bausteinen für Proteinnanostrukturen und künstlichen extrazellulären Matrices.


Language(s): eng - English
 Dates: 2019-05-142019-06-062019
 Publication Status: Published in print
 Pages: xi, 130 S.
 Publishing info: Potsdam : Universität Potsdam
 Table of Contents: -
 Rev. Type: -
 Degree: PhD



Legal Case


Project information