English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model

Manzini, E., & McFarlane, N. A. (1998). The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. Journal of Geophysical Research: Atmospheres, 103, 31523-31539. doi:10.1029/98JD02274.

Item is

Files

show Files
hide Files
:
252_Manzini.pdf (Publisher version), 2MB
Name:
252_Manzini.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
252-Report-txt.pdf (Preprint), 3MB
 
File Permalink:
-
Name:
252-Report-txt.pdf
Description:
Reportversion / Retrodigitalisat
OA-Status:
Visibility:
Restricted (Max Planck Institute for Meteorology, MHMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Manzini, Elisa1, Author                 
McFarlane, N. A., Author
Affiliations:
1MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913545              

Content

show
hide
Free keywords: DOPPLER-SPREAD PARAMETERIZATION; STATIONARY PLANETARY-WAVES; NORTHERN-HEMISPHERE; STRATOSPHERIC CIRCULATION; INTERANNUAL VARIABILITY; WINTER STRATOSPHERE; MOMENTUM DEPOSITION; MESOSPHERIC WINDS; DOWNWARD CONTROL; TROPOSPHEREMeteorology & Atmospheric Sciences;
 Abstract: Climate simulations of the middle atmosphere circulation with general circulation models are now starting to include parameterizations of the momentum flux deposition due to unresolved gravity wave spectra. A current uncertainty in the application of such parameterizations is the specification of the imposed gravity wave spectrum. The aim of this work is to quantify the effect of varying within a realistic range the source spectrum of a gravity wave parameterization in a general circulation model. Results from two simulations with the gravity wave spectrum launched at two different heights, the surface and the 110-hPa pressure level, respectively, are compared. Noteworthy differences found in the simulated middle atmosphere response include the following (1) The average temperature in the southern winter upper stratosphere is about 40 K warmer in the experiment with the surface as the launching height, virtually eliminating the typical cold polar bias that affects many general circulation models. (2) Stronger easterlies in the subtropical summer mesosphere, again in the experiment with the surface as the launching height. Diagnostics of the parameterized gravity waves indicate that in the experiment with the surface as the launching height, the net zonal momentum flux transported by the gravity waves is negative just above the troposphere at middle latitudes. This negative net momentum flux facilitates the deceleration of the mesospheric winter westerlies. The meridional circulation induced by such deceleration is thereafter responsible for the substantial polar winter warming. In contrast, in summer the negative net momentum flux limits the upper mesospheric deceleration of the easterlies. In the experiment with launching height at 110-hPa, the gravity wave net momentum flux is instead zero by construction at the launching height.

Details

show
hide
Language(s): eng - English
 Dates: 1998
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000077967000002
DOI: 10.1029/98JD02274
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Atmospheres
  Other : JGR-D
  Abbreviation : J. Geophys. Res. - D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 103 Sequence Number: - Start / End Page: 31523 - 31539 Identifier: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264_1

Source 2

show
hide
Title: Report / Max-Planck-Institut für Meteorologie
  Other : MPI Report
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: Hamburg : Max-Planck-Institut für Meteorologie
Pages: - Volume / Issue: 252 Sequence Number: - Start / End Page: - Identifier: ISSN: 0937-1060
CoNE: https://pure.mpg.de/cone/journals/resource/0937-1060