Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Effect of gene network topology on the evolution of gene-specific expression noise

Puzovic, N. (2020). Effect of gene network topology on the evolution of gene-specific expression noise. Master Thesis, Christian-Albrechts-Universität, Kiel.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Hochschulschrift

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Puzovic, Natasa1, Autor           
Dagan, Tal, Gutachter
Dutheil, Julien Y.1, Gutachter           
Affiliations:
1Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_1445635              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Expression noise is the variability of the amount of gene product among isogenic cells grown
in identical conditions. Expression noise originates from the inherent stochasticity of diffusion and
binding of the molecular players involved in gene transcription and translation. It was shown that
expression noise is an evolvable trait and that central genes in gene networks exhibit less noise. To
study the evolution of expression noise within gene networks, a gene network model that represents
expression noise and is computationally feasible to use in forward-in-time simulations is required.
Here I introduce a new model of gene regulatory networks, which represents expression noise and
is fast enough to be used in evolutionary simulations. I validate the model by replicating previously
known results from experimental data on the expression noise evolution of an individual gene under
selection. Further, I use the unique feature of the model to simulate the noise evolution of a single
gene under selection within a gene regulatory network, in which case not only the selected gene
responds to selection, but also its upstream genes. The response of upstream genes shows that noise
propagation from one gene to downstream genes, a known feature of gene regulatory networks, is
captured with the new model. In conclusion, the gene regulatory network model introduced in this
study captures key features of gene regulatory networks, is fast enough for evolutionary simulations
and is, to my knowledge, the first model of gene networks to include evolvable expression noise.
It can be used to systematically study the evolution of expression noise of genes in the context of
gene networks.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020
 Publikationsstatus: Erschienen
 Seiten: 64
 Ort, Verlag, Ausgabe: Kiel : Christian-Albrechts-Universität
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: Dipl/13267
 Art des Abschluß: Master

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: