Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2

Thum, T., Nabel, J. E. M. S., Tsuruta, A., Aalto, T., Dlugokencky, J. L., Liski, J., et al. (2020). Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2. Biogeosciences, 17, 5721-5743. doi:10.5194/bg-17-5721-2020.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
bg-17-5721-2020.pdf (Verlagsversion), 4MB
Name:
bg-17-5721-2020.pdf
Beschreibung:
Final Revised Paper
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
The Authors
:
bg-17-5721-2020-supplement.pdf (Ergänzendes Material), 9MB
Name:
bg-17-5721-2020-supplement.pdf
Beschreibung:
Supplementary Material
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
The Authors. The copyright of individual parts of the supplement might differ from the CC BY 4.0 Licens

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Thum, Tea1, Autor
Nabel, Julia E. M. S.2, Autor           
Tsuruta, Aki, Autor
Aalto , Tuula, Autor
Dlugokencky, Jarl Liski, Autor
Liski, Jari, Autor
Markkanen, Tiina, Autor
Pongratz, Julia2, Autor           
van der Laan-Luijkx, Ingrid T., Autor
Yoshida, Yukio, Autor
Zaehle, Sönke1, Autor
Affiliations:
1Max Planck Institute for Biogeochemistry, Max Planck Society, Hans-Knöll-Str. 10, 07745 Jena, DE, ou_1497750              
2Emmy Noether Junior Research Group Forest Management in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_1832286              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The trajectories of soil carbon (C) in the changing climate are of utmost importance, as soil carbon is a substantial carbon storage with a large potential to impact the atmospheric carbon dioxide (CO2) burden. Atmospheric CO2 observations integrate all processes affecting C exchange between the surface and the atmosphere. Therefore they provide a benchmark for carbon cycle models. We evaluated two distinct soil carbon models (CBALANCE and YASSO) that were implemented to a global land surface model (JSBACH) against atmospheric CO2 observations. We transported the biospheric carbon fluxes obtained by JSBACH using the atmospheric transport model TM5 to obtain atmospheric CO2. We then compared these results with surface observations from Global Atmosphere Watch (GAW) stations as well as with column XCO2 retrievals from the GOSAT satellite. The seasonal cycles of atmospheric CO2 estimated by the two different soil models differed. The estimates from the CBALANCE soil model were more in line with the surface observations at low latitudes (0 N–45 N) with only 1 % bias in the seasonal cycle amplitude (SCA), whereas YASSO was underestimating the SCA in this region by 32 %. YASSO gave more realistic seasonal cycle amplitudes of CO2 at northern boreal sites (north of 45 N) with underestimation of 15 % compared to 30 % overestimation by CBALANCE. Generally, the estimates from CBALANCE were more successful in capturing the seasonal patterns and seasonal cycle amplitudes of atmospheric CO2 even though it overestimated soil carbon stocks by 225 % (compared to underestimation of 36 % by YASSO) and its predictions of the global distribution of soil carbon stocks was unrealistic. The reasons for these differences in the results are related to the different environmental drivers and their functional dependencies of these two soil carbon models. In the tropical region the YASSO model showed earlier increase in season of the heterotophic respiration since it is driven by precipitation instead of soil moisture as CBALANCE. In the temperate and boreal region the role of temperature is more dominant. There the heterotophic respiration from the YASSO model had larger annual variability, driven by air temperature, compared to the CBALANCE which is driven by soil temperature. The results underline the importance of using sub-yearly data in the development of soil carbon models when they are used in shorter than annual time scales.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-012020-082020-11-23
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.5194/bg-17-5721-2020
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : QUINCY
Grant ID : 647204
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : CRESCENDO
Grant ID : 641816
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Biogeosciences
  Andere : Biogeosciences
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Seiten: - Band / Heft: 17 Artikelnummer: - Start- / Endseite: 5721 - 5743 Identifikator: ISSN: 1726-4170
CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006