English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Functional Imaging of Coherent Visual Perception in the Monkey and the Human

Kourtzi, Z. (2003). Functional Imaging of Coherent Visual Perception in the Monkey and the Human. Talk presented at University of Glasgow: Seminar Series in Psychology. Glasgow, UK. 2003-10-10.

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Kourtzi, Z1, 2, 3, Author              
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497797              
3Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: The question of how local image features on the retina are integrated into perceived global shapes is central to our understanding of human visual perception. However, the neural mechanisms that mediate unified shape perception in the primate brain remain largely unknown. Our recent fMRI studies on both monkeys and humans addressed this question by using an adaptation paradigm, in which stimulus selectivity was deduced by changes in the course of adaptation of a pattern of randomly oriented elements. Accordingly, we observed stronger activity when orientation changes in the adapting stimulus resulted in a collinear contour than a different random pattern. This selectivity to collinear contours was observed not only in higher (occipitotemporal) visual areas that are implicated in shape processing, but also in early (retinotopic) visual areas where selectivity depended on the receptive field size. These findings suggest that unified shape perception in both monkeys and humans involves multiple visual areas that may integrate local elements to global shapes at different spatial scales. Further human fMRI studies showed decreased detection performance and fMRI activations when misalignment of the contour elements disturbed the perceptual coherence of the contours. However, grouping of the misaligned contour elements by disparity resulted in increased performance and fMRI activations. These studies provide evidence for the role of early perceptual organization processes and their interactions with higher stages of visual analysis in unified visual perception in the primate brain.

Details

show
hide
Language(s):
 Dates: 2003-10
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: University of Glasgow: Seminar Series in Psychology
Place of Event: Glasgow, UK
Start-/End Date: 2003-10-10
Invited: Yes

Legal Case

show

Project information

show

Source

show