Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

Božič, A., Zollhöfer, M., Theobalt, C., & Nießner, M. (2019). DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data. Retrieved from http://arxiv.org/abs/1912.04302.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1912.04302.pdf (Preprint), 4MB
Name:
arXiv:1912.04302.pdf
Beschreibung:
File downloaded from arXiv at 2020-01-16 13:49 Video: https://youtu.be/OrHLacCDZVQ
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Božič, Aljaž1, Autor
Zollhöfer, Michael1, Autor           
Theobalt, Christian2, Autor                 
Nießner, Matthias1, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Computer Vision and Pattern Recognition, cs.CV,Computer Science, Graphics, cs.GR
 Zusammenfassung: Applying data-driven approaches to non-rigid 3D reconstruction has been
difficult, which we believe can be attributed to the lack of a large-scale
training corpus. One recent approach proposes self-supervision based on
non-rigid reconstruction. Unfortunately, this method fails for important cases
such as highly non-rigid deformations. We first address this problem of lack of
data by introducing a novel semi-supervised strategy to obtain dense
inter-frame correspondences from a sparse set of annotations. This way, we
obtain a large dataset of 400 scenes, over 390,000 RGB-D frames, and 2,537
densely aligned frame pairs; in addition, we provide a test set along with
several metrics for evaluation. Based on this corpus, we introduce a
data-driven non-rigid feature matching approach, which we integrate into an
optimization-based reconstruction pipeline. Here, we propose a new neural
network that operates on RGB-D frames, while maintaining robustness under large
non-rigid deformations and producing accurate predictions. Our approach
significantly outperforms both existing non-rigid reconstruction methods that
do not use learned data terms, as well as learning-based approaches that only
use self-supervision.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-12-092019
 Publikationsstatus: Online veröffentlicht
 Seiten: 18 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1912.04302
URI: http://arxiv.org/abs/1912.04302
BibTex Citekey: Bozic_arXiv1912.04302
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: