Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Antennas, quantum optics and near-field microscopy

Sandoghdar, V., Agio, M., Chen, X.-W., Götzinger, S., & Lee, K.-G. (2013). Antennas, quantum optics and near-field microscopy. In M. Agio (Ed.), Optical Antennas (pp. 100-121). Cambridge University Press. doi:10.1017/CBO9781139013475.009.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sandoghdar, Vahid1, Autor           
Agio, Mario2, Autor
Chen, Xue-Wen1, Autor
Götzinger, Stephan1, Autor           
Lee, Kwang-Geol1, Autor
Affiliations:
1Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364722              
2National Institute of Optics (INO-CNR) and European Laboratory for Nonlinear Spectroscopy (LENS), ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The atom is the most elementary constituent of any model that describes the quantum nature of light–matter interaction. Because atoms emit and absorb light at well-defined frequencies, nineteenth century scientists thought of them as collections of harmonically oscillating electric dipole moments or EHDs. In the language of modern physics, the latter represent dipolar transitions among the various quantum mechanical states of an atom.

In a strict definition, the field of quantum optics deals with problems that not only require the quantization of matter but also of the electromagnetic field, with examples such as (i) generation of squeezed light or Fock states, (ii) strong coupling of an atom and a photon, (iii) entanglement of a photon with an atom and (iv) Casimir and van der Waals forces. There are also many other important topics that have been discussed within the quantum optics community but do not necessarily require a full quantum electrodynamic (QED) treatment. Examples are (i) cooling and trapping of atoms, (ii) precision spectroscopy and (iii) modification of spontaneous emission.

The simple picture of a TLS as an EHD remains very insightful and valuable to this day. Indeed, much of what we discuss in this chapter has to do with the interplay between the quantum and classical mechanical characters of dipolar oscillators. For instance, the extinction cross-section of a TLS, given by 3λ2/2π, can be derived just as well using quantum mechanics [70] or classical optics [234]. Another example, albeit more subtle, concerns the spontaneous emission rate.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2013-032013
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1017/CBO9781139013475.009
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Optical Antennas
Genre der Quelle: Buch
 Urheber:
Agio, Mario, Herausgeber
Alù, Andrea, Autor
Affiliations:
-
Ort, Verlag, Ausgabe: Cambridge University Press
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 100 - 121 Identifikator: ISBN: 9781139013475
DOI: 10.1017/CBO9781139013475