Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Sleep-wake cycles drive daily dynamics of synaptic phosphorylation

Brüning, F., Noya, S. B., Bange, T., Koutsouli, S., Rudolph, J. D., Tyagarajan, S., et al. (2019). Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. SCIENCE, 366(6462): eaav3617, pp. 201. doi:10.1126/science.aav3617.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Brüning, Franziska1, Autor           
Noya, Sara B.2, Autor
Bange, Tanja2, Autor
Koutsouli, Stella2, Autor
Rudolph, Jan D.3, Autor           
Tyagarajan, Shiva2, Autor
Cox, Jürgen3, Autor           
Mann, Matthias1, Autor           
Brown, Steven A.2, Autor
Robles, Maria S.2, Autor
Affiliations:
1Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              
2external, ou_persistent22              
3Cox, Jürgen / Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society, ou_2063284              

Inhalt

einblenden:
ausblenden:
Schlagwörter: GLYCOGEN-SYNTHASE KINASE-3; COMPUTATIONAL PLATFORM; IN-VIVO; WAKEFULNESS; INHIBITION; PLASTICITY; PROTEOMICS; HOMER1AScience & Technology - Other Topics;
 Zusammenfassung: The circadian clock drives daily changes of physiology, including sleep-wake cycles, through regulation of transcription, protein abundance, and function. Circadian phosphorylation controls cellular processes in peripheral organs, but little is known about its role in brain function and synaptic activity. We applied advanced quantitative phosphoproteomics to mouse forebrain synaptoneurosomes isolated across 24 hours, accurately quantifying almost 8000 phosphopeptides. Half of the synaptic phosphoproteins, including numerous kinases, had large-amplitude rhythms peaking at rest-activity and activity-rest transitions. Bioinformatic analyses revealed global temporal control of synaptic function through phosphorylation, including synaptic transmission, cytoskeleton reorganization, and excitatory/inhibitory balance. Sleep deprivation abolished 98% of all phosphorylation cycles in synaptoneurosomes, indicating that sleep-wake cycles rather than circadian signals are main drivers of synaptic phosphorylation, responding to both sleep and wake pressures.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019
 Publikationsstatus: Online veröffentlicht
 Seiten: 25
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000490014700034
DOI: 10.1126/science.aav3617
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: SCIENCE
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA : AMER ASSOC ADVANCEMENT SCIENCE
Seiten: - Band / Heft: 366 (6462) Artikelnummer: eaav3617 Start- / Endseite: 201 Identifikator: ISSN: 0036-8075