Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Spin-orbit-controlled metal–insulator transition in Sr2IrO4

Zwartsenberg, B., Day, R. P., Razzoli, E., Michiardi, M., Xu, N., Shi, M., et al. (2020). Spin-orbit-controlled metal–insulator transition in Sr2IrO4. Nature Physics, 16, 290-294. doi:10.1038/s41567-019-0750-y.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zwartsenberg, B.1, Autor
Day, R. P.1, Autor
Razzoli, E.1, Autor
Michiardi, M.2, Autor           
Xu, N.1, Autor
Shi, M.1, Autor
Denlinger, J.D.1, Autor
Cao, G.1, Autor
Calder, S.1, Autor
Ueda, K.1, Autor
Bertinshaw, J.1, Autor
Takagi, H.1, Autor
Kim, B. J.1, Autor
Elfimov, I. S.1, Autor
Damascelli, A.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863445              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Bandwidth, Calculations, Carrier concentration, Electronic structure, Filling, Ground state, Insulation, Iridium compounds, Photoelectron spectroscopy, Strontium compounds, Angle resolved photoemission spectroscopy, Critical value, Electron interaction, Filling effects, Insulating phase, Insulating state, Orbit coupling, Tight-binding calculations, Metal insulator transition
 Zusammenfassung: In the context of correlated insulators, where electron–electron interactions (U) drive the localization of charge carriers, the metal–insulator transition is described as either bandwidth- or filling-controlled1. Motivated by the challenge of the insulating phase in Sr2IrO4, a new class of correlated insulators has been proposed, in which spin–orbit coupling (SOC) is believed to renormalize the bandwidth of the half-filled jeff = 1/2 doublet, allowing a modest U to induce a charge-localized phase2,3. Although this framework has been tacitly assumed, a thorough characterization of the ground state has been elusive4,5. Furthermore, direct evidence for the role of SOC in stabilizing the insulating state has not been established, because previous attempts at revealing the role of SOC6,7 have been hindered by concurrently occurring changes to the filling8–10. We overcome this challenge by employing multiple substituents that introduce well-defined changes to the signatures of SOC and carrier concentration in the electronic structure, as well as a new methodology that allows us to monitor SOC directly. Specifically, we study Sr2Ir1−xTxO4 (T = Ru, Rh) by angle-resolved photoemission spectroscopy, combined with ab initio and supercell tight-binding calculations. This allows us to distinguish relativistic and filling effects, thereby establishing conclusively the central role of SOC in stabilizing the insulating state of Sr2IrO4. Most importantly, we estimate the critical value for SOC in this system to be λc = 0.42 ± 0.01 eV, and provide the first demonstration of a spin–orbit-controlled metal–insulator transition. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-01-272020-01-27
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41567-019-0750-y
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Physics
  Andere : Nat. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Pub. Group
Seiten: - Band / Heft: 16 Artikelnummer: - Start- / Endseite: 290 - 294 Identifikator: ISSN: 1745-2473
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000025850