English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Identification of the Cu2+ Binding Sites in the N-Terminal Domain of the Prion Protein by EPR and CD Spectroscopy

Aronoff-Spencer, E., Burns, C., Avdievich, N., Gerfen, G., Pelsach, J., Antholine, W., et al. (2000). Identification of the Cu2+ Binding Sites in the N-Terminal Domain of the Prion Protein by EPR and CD Spectroscopy. Biochemistry, 39(45), 13760-13771. doi:10.1021/bi001472t.

Item is

Files

show Files

Locators

show
hide
Locator:
https://pubs.acs.org/doi/10.1021/bi001472t (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Aronoff-Spencer, E, Author
Burns, CS, Author
Avdievich, NI1, Author           
Gerfen, GJ, Author
Pelsach, J, Author
Antholine, WE, Author
Ball, HL, Author
Cohen, FE, Author
Prusiner, SE, Author
Millhauser, GL, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Recent evidence indicates that the prion protein (PrP) plays a role in copper metabolism in the central nervous system. The N-terminal region of human PrP contains four sequential copies of the highly conserved octarepeat sequence PHGGGWGQ spanning residues 60−91. This region selectively binds divalent copper ions (Cu2+) in vivo. To elucidate the specific mode and site of binding, we have studied a series of Cu2+−peptide complexes composed of 1-, 2-, and 4-octarepeats and several sub-octarepeat peptides, by electron paramagnetic resonance (EPR, conventional X-band and low-frequency S-band) and circular dichroism (CD) spectroscopy. At pH 7.45, two EPR active binding modes are observed where the dominant mode appears to involve coordination of three nitrogens and one oxygen to the copper ion, while in the minor mode two nitrogens and two oxygens coordinate. ESEEM spectra demonstrate that the histidine imidazole contributes one of these nitrogens. The truncated sequence HGGGW gives EPR and CD that are indistinguishable from the dominant binding mode observed for the multi-octarepeat sequences and may therefore comprise the fundamental Cu2+ binding unit. Both EPR and CD titration experiments demonstrate rigorously a 1:1 Cu2+/octarepeat binding stoichiometry regardless of the number of octarepeats in a given peptide sequence. Detailed spin integration of the EPR signals demonstrates that all of the bound Cu2+ is detected thereby ruling out strong exchange coupling that is often found when there is imidazolate bridging between paramagnetic metal centers. A model consistent with these data is proposed in which Cu2+ is bound to the nitrogen of the histidine imidazole side chain and to two nitrogens from sequential glycine backbone amides.

Details

show
hide
Language(s):
 Dates: 2000-11
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/bi001472t
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biochemistry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Columbus, Ohio : American Chemical Society
Pages: - Volume / Issue: 39 (45) Sequence Number: - Start / End Page: 13760 - 13771 Identifier: ISSN: 0006-2960
CoNE: https://pure.mpg.de/cone/journals/resource/954925384103