English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Modeling disequilibrium chemistry of exoplanet atmospheres using a sequence of post-processed forward models

Baeyens, R., Decin, L., Carone, L., & Venot, O. (2019). Modeling disequilibrium chemistry of exoplanet atmospheres using a sequence of post-processed forward models. In AAS/Division for Extreme Solar Systems Abstracts.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Baeyens, Robin1, Author
Decin, Leen1, Author
Carone, Ludmila1, Author
Venot, Olivia1, Author
Affiliations:
1Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners, ou_2421692              

Content

show
hide
Free keywords: -
 Abstract: In anticipation of the next era of space telescopes for exoplanet characterization (James Webb, ARIEL) it is essential that sophisticated modeling tools for the atmospheres of transiting planets are developed. However, the associated effects of strong stellar irradiation and tidal locking make these objects inherently three-dimensional (3D) in nature, and multidimensional forward models are thus required to accurately simulate the multitude of processes that comprise an atmospheric system. This is especially the case for the out-of-equilibrium chemical composition, which is tightly coupled to the planetary climate through dynamical quenching and can show large longitudinal variations due to day-night temperature differences and photochemical reactions. Despite fast developments in the field, coupling 3D general circulation models (GCM) with radiative transfer and chemistry, computation times are a major bottleneck of these models and thus they are only applied to a small number of planets. In an effort to remedy this limitation, we employ a range of post-processed forward models in sequence: a 3D GCM (MITgcm, Adcroft+2004) with simplified, Newtonian radiative transfer (based on petitCODE, Mollière+ 2015), a post-processed pseudo-2D chemical network solver (Agundez+ 2014) and a ray-tracing code (petitRADTRANS, Mollière+ 2019), to compute an extensive grid of planetary atmospheres and synthetic transmission spectra. This allows us to study the mechanisms of disequilibrium chemistry and their effect on the observables in a systematic way for a large range of planets. More specifically, we report on the change in synthetic transmission spectra due to longitudinally-varying vertical mixing and photochemistry. This enables us to derive general parametrizations for these processes for implementation in 1D retrieval codes, a necessary step in preparing for the interpretation of high-quality data coming from the James Webb Space Telescope and ARIEL.

Details

show
hide
Language(s):
 Dates: 2019
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: AAS/Division for Extreme Solar Systems Abstracts
Place of Event: -
Start-/End Date: 2019

Legal Case

show

Project information

show

Source 1

show
hide
Title: AAS/Division for Extreme Solar Systems Abstracts
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -